
U.S.N.A.---Trident Scholar project report: no. 286 (2001)

Advanced Shipboard Control Systems

by

Midshipman Jonathan J. Vanecko, Class of 2001
United States Naval Academy

Annapolis, Maryland

Assistant Professor Edwin L. Zivi
Weapons and Systems Engineering Department

CDR Bradley D. Taylor, USNR
Weapons and Systems Engineering Department

__

Acceptance for the Trident Scholar Committee

Professor Joyce E. Shade
Chair, Trident Scholar Committee

__

USNA – 1531 – 2

Form SF298 Citation Data

Report Date
("DD MON YYYY")
07052001

Report Type
N/A

Dates Covered (from... to)
("DD MON YYYY")

Title and Subtitle
Advanced shipboard control systems

Contract or Grant Number

Program Element Number

Authors
Vanecko, Jonathan J.

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
US Naval Academy Annapolis, MD 21402

Performing Organization
Number(s)

Sponsoring/Monitoring Agency Name(s) and Address(es) Monitoring Agency Acronym

Monitoring Agency Report
Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms

Document Classification
unclassified

Classification of SF298
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
unlimited

Number of Pages
90

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including g the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC
20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

7 May 2001
3. REPORT TYPE AND DATE COVERED

4. TITLE AND SUBTITLE

Advanced shipboard control systems
6. AUTHOR(S)

Vanecko, Jonathan J.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER

US Naval Academy
Annapolis, MD 21402

Trident Scholar project report no.
286 (2001)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

This document has been approved for public release; its distribution
is UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT:
For the new millennium, the U.S. Navy has made a fundamental commitment to drastically reduced crew sizes. Automated systems
can reduce crew size significantly, improving the efficiency and effectiveness of a ship. Automation must be continuously
available and dependable under all conditions, including combat battle damage. To continue to work during the worst casualty
conditions, command and control networks must automatically reconfigure around battle damage. By autonomously routing data
around damaged components in an intelligent manner, network fragment healing dramatically improves distributed control system
survivability. Dynamic reconfiguration, using network fragment healing, can provide the continuity of communications service
that is required aboard U.S. Naval vessels during combat operations. To achieve survivable, distributed communication, an
industry proven networking standard, ANSI-709.1 Lon-Works, is extended to military applications. Specifically, the topology
of a semi-mesh connection of rings is investigated through availability analysis. Hypercube and semi-mesh topologies are
scalable. Furthermore, enhanced network fragment healing algorithms that route message traffic around damaged network
components in a more efficient manner are investigated. In the future, these routing algorithms will be evaluated through
network simulation, and validated with data obtained from network fragment healing tests performed aboard YP679, an Office of
Naval Research test craft that is representative of a small scale combatant.

15. NUMBER OF PAGES
90

14. SUBJECT TERMS
network fragment healing, network topology, fault tolerant control systems,
network modeling

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298
 (Rev.2-89) Prescribed by ANSI Std. Z39-18

 1

Abstract

For the new millennium, the U.S. Navy has made a fundamental commitment to
drastically reduced crew sizes. Automated systems can reduce crew size significantly,
improving the efficiency and effectiveness of a ship. Automation must be continuously
available and dependable under all conditions, including combat battle damage. To
continue to work during the worst casualty conditions, command and control networks
must automatically reconfigure around battle damage.

By autonomously routing data around damaged components in an intelligent manner,
network fragment healing dramatically improves distributed control system survivability.
Dynamic reconfiguration, using network fragment healing, can provide the continuity of
communications service that is required aboard U.S. Naval vessels during combat
operations.

To achieve survivable, distributed communication, an industry proven networking
standard, ANSI-709.1 Lon-Works, is extended to military applications. Specifically, the
topology of a semi-mesh connection of rings is investigated through availability analysis.
Hypercube and semi-mesh topologies are also investigated using Monto Carlo analysis to
determine if these topologies are scalable. Furthermore, enhanced network fragment
healing algorithms that route message traffic around damaged network components in a
more efficient manner are investigated. In the future these routing algorithms will be
evaluated through network simulation, and validated with data obtained from network
fragment healing tests performed aboard YP679, an Office of Naval Research test craft
that is representative of a small scale combatant.

Keywords

Network Fragment Healing, Network Topology, Fault Tolerant Control Systems,
Network Modeling

 2

Acknowledgments

LCDR Frank Novak, ONR 334, and the United States Naval Academy Trident Scholar
program provided significant support that allowed this research to be undertaken. Adept
Systems Inc. also provided significant guidance in overcoming the learning curve
associated with this project, specifically network fragment healing and availability
analysis fundamentals.

 3

Nomenclature

ANSI 709.1-A: LONTalk networking protocol specification

Beta1: A time period directly following a packet transmission

Beta2: The time period of a randomizing slot. A node that has a packet to send waits an

integer number of Beta2 slots before beginning packet transmission.

Collision Avoidance: An optional feature of a carrier sense multiple access protocol
where a scheme is employed to avoid collisions before they occur.

Collision Detection: An optional feature of a carrier sense multiple access protocol that

allows collisions to be detected, and network specific actions to be taken as a
result.

CRC (Cyclic Redundancy Check): A type of error checking used to ensure that the

message is received in its entirety.

CSMA (Carrier Sense Multiple Access): A specific type of medium access control
where the node wishing to transmit first senses the network to see if the carrier is
idle. This allows more than one node to transmit on a common medium without
centralized arbitration.

CSMA / CD (Collision Detection): A modification to the basic CSMA protocol that

allows collisions on the network to be quickly detected. Once a collision is
detected the colliding nodes send signals to ensure that all nodes on the network
are aware of the collision. The nodes then remain silent for a random amount of
time (backoff) before attempting to transmit again.

Differential Manchester Encoding: A way to encode data in binary form that has

several advantages. With DM encoding, a clock signal is passed along with the
information so that receiving nodes can easily synchronize on the message. DM
encoding has no DC component and can be transformer coupled.

Framing: A method of packaging data whereby each packet is broken down into several

fields containing specific information.

ISO: International Standards Organization.

Lon-Works: A networking technology developed by Echelon Corporation that is very

robust and ideal for distributed control.

 4
MAC (Media Access Control): The method by which a message is placed on the

physical network.

Network Fragment Healing: Process by which messages can be routed around physical
network damage.

Node: A connection point on the network where the processing of data occurs.

OSI (Open Systems Interconnection) Model: A framework created by the

International Standards Organization to ease the exchange of network
information.

P-Persistent CSMA: The type of collision avoidance used by the Lon-Works network.

A prediction of future message traffic is generated to dynamically adjust the
number of Beta2 slots that nodes randomize over in order to decrease collisions.

Packet: The information that is placed on the network. A packet contains data that is

sent along with other information the receiving nodes require.

Priority Slot: A slot of Beta2 duration reserved for the transmission of priority packets.

These slots precede the randomizing slots and ensure that urgent messages are
placed on the network before messages of normal priority.

Protocol Data Unit: A format for transmitting data between software entities. A

protocol data unit is an element that consists of control information and data.
Each layer of the OSI model has its own specific protocol data unit (PDU) such as
a Network PDU, Physical PDU, etc.

Router: A device that transfers data between source and destination subnetworks. In

this context, a router consists of two nodes placed back to back.

Slot: A time period during which a node may attempt to transmit a packet.

TCP/IP: A very robust protocol that provides communication between pairs of processes

on a network and allows IP addresses, or network connections, to be declared.
This allows messages to be transmitted between multiple networks and is
commonly used as the protocol for the Internet.

Token Ring: A type of protocol used in control applications. Each station on the

network is allowed to transmit only while holding a token, which ensures reliable
communications because only one token is used for the ring. After the token is
held by a station for a designated amount of time it relinquishes possession of the
token to another station, and that station is then allowed access to the network.

 5

Technical Nomenclature

Beta1: > [1bit time + (2 * τ p + τ m)]

Beta2: > [2 * τ p + τ m]

BL: An estimate of current message backlog. 1 63BL≤ ≤

CRC: For Lon-Works the cyclic redundancy check is generated by the polynomial

X16 + X12 + X5 + 1.

CT: A time base used to generate Beta1, Beta2, and the preamble. Depending on media

supported, each node will support one of the following values for CT: {600ns,
1.2us, 4.8us, 9.6us}

Dmean: The average randomizing delay between packets. Because Td is uniformly

distributed
()

2

base

base

W
W = .

Td: Random delay generated on the interval (0...(BL*Wbase)-1). Td is an integer number

of Beta2 randomizing slots.

τ m: Time period between an idle channel detection and the first transition of the

outgoing data packet.

τ p: Physical propagation delay defined by media length.

w: The size of the randomizing window. w=(BL*Wbase)-1

Wbase: Number of randomizing slots in the base randomizing window.

 6

Table of Contents

ABSTRACT ..1

KEYWORDS...1

ACKNOWLEDGMENTS...2

NOMENCLATURE ...3

TECHNICAL NOMENCLATURE..5

INTRODUCTION ..8

BACKGROUND..8

OSI ISO MODEL...11

PROTOCOL OPERATION ...16

RELIABILITY ANALYSIS...23

HYPERCUBE ...26

LON-WORKS NETWORK FRAGMENT HEALING COMPONENTS.................30

LON-WORKS ENHANCEMENT...33

REASONS FOR MODELING ...34

SOFTWARE DESIGN CONSIDERATIONS ...35

PROCEDURE...38

RESULTS ...40

SYNOPSIS ...41

CONCLUSIONS ...41

 7
RECOMMENDATIONS ..41

REFERENCES ...43

BIBLIOGRAPHY ..44

APPENDIX A – MATLAB RELIABILITY PLOTS...47

APPENDIX B — MATLAB CODE..49

APPENDIX C – PROTOCOL DATA UNIT SUMMARY (PDU)60

APPENDIX D – MONTO CARLO ANALYSIS PLOTS.......................................61

APPENDIX E—MONTO CARLO ANALYSIS DATA..64

APPENDIX F – NETWORK FRAGMENT HEALING MODEL............................76

 8

Introduction

The reliance of the U.S. Navy upon systems automation will steadily increase as
technology advances and crew sizes are reduced. To support a smooth transition of crew
functions to dependable automation, a method to ensure reliable data communications
must be developed.

The implementation of dependable automation aboard U.S. Navy ships will directly
support the removal of sailors from repetitive tasks, and allow them to be placed into
decision-making positions. Furthermore, many safety benefits are possible with the
automation of engineering and damage control. Specifically, an automated sensor
network gives sailors a clearer picture of what is happening throughout the ship during
casualty conditions and allows them to employ damage control teams more effectively.
Although these systems can greatly improve the efficiency of a ship, they must provide
continuous real time availability during the worst casualty conditions.

Network fragment healing dramatically improves distributed control system survivability
by routing data around damaged network components. Moreover, network fragment
healing has the intelligence to autonomously sense damage, and choose an alternate path.
By doing so, network fragment healing is able to provide the continuity of
communications service that is required aboard a U.S. Naval vessel during combat
operations.

Recently, the Office of Naval Research (ONR) has shown interest in this technology
because of the possibilities it could have aboard naval vessels. ONR has implemented a
small scale Lon-Works network aboard YP 679, a dedicated test craft, and is currently
conducting preliminary research. The YP craft are used at the United States Naval
Academy for Midshipmen training and are representative of a small-scale combatant.
One of the ONR team members, Adept Systems Inc, has pioneered the use of network
fragment healing with Lon-Works networks. This research extends network fragment
healing for application on a full-scale combatant through topology and algorithm
investigation.

Background

With the decision to shift manpower intensive functions to automation aboard U.S. Navy
ships, the realization that these functions require reliable data communications surfaced.
Formerly, reliable data communications came in the form of redundancy. For example,
DDG-51 flight I ships use the data multiplex system (DMS), which consists of five
redundant backbone cables [1]. This system provides only limited survivability by means
of redundancy and is very expensive. Furthermore, because the network is implemented
in a hierarchical fashion, the system is vulnerable to damage.

 9

Figure 1 – Hierarchical Control System [7]

If any of the controllers are lost, then the performance of the system is greatly degraded
or completely lost. Figure 1 is a typical hierarchical control system and readily shows the
problems associated with this type of topology in survivable control applications. If any
damage is sustained, and a breakage occurs, then network components have no way of
regaining communications and are segregated, or fragmented, from other parts of the
network. Figure 1 shows that nodes A and B have only one path by which to
communicate. If this path is damaged, there is no other route messages can travel
between the nodes. This lack of survivability is characteristic of hierarchical networks.
By using a more distributed approach greater reliability can be obtained without massive
redundancy.

One method to avoid the problem of a single point of failure is to implement a
Component Level Intelligent Distributed Controls System or CLIDCS. In a CLIDCS,
nodes are organized in a peer fashion that ensures minimum degradation to network
performance due to node or link failure. Furthermore, a CLIDCS has imbedded
intelligence at each node that allows it to cooperate with other nodes, as well as operate
in their absence. This nodal level intelligence gives a CLIDCS a distinct advantage over
other types of control networks [2].

Another way to improve communications reliability is through a process called network
fragment healing. Network fragment healing is, as the name implies, a way to
reconfigure or heal the network when physical damage is sustained and a communication
path is lost. Using a topology that supports redundant paths, properly configured routers
can create secondary routes to reconnect nodes that have been isolated by faults. This
greatly improves data communication reliability since many different paths are between
any two points on the network.

Single
Points of
Failure

A B

 10
In order for the sensors, actuators, and other commercial equipment to work together, a
control algorithm for the network must be developed. In keeping with the Navy’s
decision to use Commercial Off The Shelf (COTS) technology, a cost effective, industry
proven, distributed control technology, Lon-Works, was chosen for network fragment
healing and is the foundation of this research. Lon-Works is presently used in thousands
of applications in the industrial and transportation sectors and is a recognized open
standard. Although several other networking packages are currently available, Florida
Atlantic University has demonstrated the capability of Lon-Works to support distributed
machinery control. Lon-Works is an industrial strength distributed control system
development environment that uses Neuron C, ANSI C with three network specific
extensions. The challenge that users face is that Lon-Works does not support redundant
network paths that would be needed if the semi-mesh of rings topology is to be
implemented. Recently, Florida Atlantic University and Adept Systems tackled this
problem by writing control algorithms that mask the redundant paths from the LONTalk
Protocol. Should a fault occur, this redundancy is selectively unmasked allowing the
system to function properly.

Florida Atlantic University and its commercial partner, Adept Systems, have been
investigating the use of intelligent self-healing networks for several years and have made
many profound discoveries. Recently, great success has been achieved by applying this
knowledge to autonomous underwater vehicles. Using Lon-Works industrial control
technology, Florida Atlantic has created network fragment healing algorithms for small-
scale networks. The objective of this research is to extend these results to more complex
military systems, supporting the next generation of surface combatants. This is made
feasible by studying possible topologies that will optimize network fragment healing with
regards to time for reconfiguration and path redundancy. By creating a computer
simulation that models the Lon-Works network aboard YP 679, a network model that can
help extend Lon-Works to higher order systems can be created. Furthermore, the data
generated by the computer simulation can be correlated to actual Lon-Works network
data. This data was collected by Adept Systems during tests aboard YP 679 and consists
of network message traffic during times of normal network operation as well as during
network reconfiguration. By correlating this data to the network simulation, results can
be validated, making the research more meaningful.

Basic Network Calculations

Some of the basic calculations needed for any network include the latencies due to the
propagation of a signal through the medium. The speed of light is 299,792,458 m/s or
about 300 million m/s. For a distance of 10m, which is half the circumference of a ring
on the YP network, this corresponds to a propagation delay of about 3.3*10-8 s or 33ns.
Again using the YP as a base model we see that the transmission rate is 78kbits/s and the
period is 1.28x10-5s. Dividing the propagation delay by the transmission rate gives us a
value of .0025, which is the fraction of the transmission that will be lost at the beginning
and end of each high or low of the transmitted signal. Because the signal that is being

 11
transmitted is a binary signal, the loss of ¼% of a signal does not affect reception
because the high or low signal will still be present for 99.75% of the signal.

Determining the percentage lost on a 1.5Mbit/s network, which is about 20 (19.23) times
faster, shows that there will be a 5% loss on each transition of the encoded signal. This
still is not enough signal attenuation to cause data loss since the system only needs to
determine a high or low and can do so with only part of the total signal.

OSI ISO MODEL

In order to facilitate a meaningful exchange of information among different users, the
International Standards Organization (ISO) created an Open System Interconnection
(OSI) model with seven primary layers, as shown in Figure 2. Each layer defines a
subsystem that can logically be separated from the others.

Figure 2 – ISO OSI Model [3]

 12
One distinct advantage to an OSI model is that each level of the network is clearly
defined, allowing different users to understand how a specific layer of the protocol stack
is implemented. Furthermore, a layered framework has the ability to be upgraded one
layer at a time, saving costs, and allowing single layers to be replaced by hardware and
software from an outside network vendor [8]. This research is concerned primarily with
the lower three layers because of their involvement in placing messages on, and receiving
messages from the physical media.

Layer 1 – Physical Layer

The first layer, the physical layer, provides the means to place messages on the network
based on the type of media being used. One important aspect of the physical layer is the
actual connection of points, or nodes, along the network. When a network is to be used
for control, the topology, which governs how the network is wired, plays an important
role. Figure 3 shows the most basic type of network configuration, a linear bus.

Figure 3 – Linear Bus Topology [7]

A linear bus is a single communication path that nodes can be attached to. Although this
topology is very cost effective, it is not very robust. A single break along the path at any
point divides the bus and isolates one half from the other, causing a loss of
communications. A simple way to increase survivability is to bend the bus around and
form a ring, as in Figure 4.

Figure 4 – Ring Topology [7]

1
3

4

5

6

7

2
8

 13
With very little extra cost, the network has now doubled its availability by allowing
data to flow in either direction. When a single break occurs, nodes will not be isolated
from the rest of the system.

To further improve survivability more complex topologies can be implemented.

Figure 5 – Mesh Topology [7]

In a mesh topology, shown in Figure 5, the availability of the network actually increases
when nodes are added. With each additional node, the number of paths between any two
points increases at nearly an exponential rate. Although this topology is extremely
robust, it is very complex and can be extremely expensive to implement due to wiring
costs.

One way to achieve a higher level of availability with a low network cost is by
implementing a topology such as a semi mesh of rings, as seen in Figure 6.

Figure 6 – Mesh of Rings Topology [7]

A semi mesh of rings is the configuration currently used on the Office of Naval
Research’s YP 679 test bed for network fragment healing, and allows for relatively
inexpensive implementation of a very robust network topology. This topology allows for

2 4

1

3

5

 14
a greater number of nodes on the network because the number of mesh paths is now
only dependant on the number of rings placed on the network, and not the number of
nodes. By placing nodes onto rings and then implementing a very robust topology with
the rings, cost is kept down without any serious sacrifice in performance. Furthermore,
the loss in performance is small compared to the decrease in cost and complexity.
Therefore, this topology is well suited to networks with many nodes.

A hypercube of rings is very similar to that of a semi mesh but differs in the way that the
rings are interconnected. With a semi mesh of rings, there is no set pattern for connecting
the rings together where as, a hypercube of rings would mirror a standard hypercube, but
instead of nodes at each of the vertices there would be a ring of nodes. Hypercubes are
used in industry because of their robust design and low cost relative to a full mesh
topology. To implement a full mesh topology the number of connections increases in an
exponential fashion while a hypercube increases linearly. Furthermore, hypercubes have
multiple paths between points on the network that make it a good choice for network
fragment healing. The implementation of a hypercube of rings must be investigated and
compared with a semi-mesh of rings topology to ensure that the best topology is chosen
for large-scale systems.

Layer 2 – MAC / Network Layer

MAC

The second layer of the OSI model is the data link layer. In the ANSI 709.1 Lon-Works
protocol, this layer is divided into two sections, the media access control layer (MAC),
and the link layer. The MAC layer plays a very important role and is needed because
many nodes must vie for access to the physical media in an efficient manner. There are
many different types of algorithms that can be used to place messages on networks but
the goal of all of them is to place data on the network as quickly, and reliably as possible
without collision. The ANSI 709.1 protocol uses an algorithm called predictive p-
persistent carrier sensed medium access / collision avoidance (CSMA/CA) with optional
collision detection to ensure reliable data communications [3,7].

Framing

A second function of the data link layer is to ensure that outgoing messages are correctly
framed. By framing messages, each important section of the message, including the
priority, address, and backlog, is always placed in the same location, allowing a receiving
node to quickly find the location of each piece of information.

Data Encoding

The data link layer also provides the means by which information is encoded and
prepared for transmission. The YP 679 Lon Works network uses a communications
transceiver that makes use of Differential Manchester encoding, one of several types of

 15
binary encoding [3]. The binary system, which is used almost exclusively in computer
software and hardware applications, is characterized by a signal that is either high or low.
This makes recovery of the signal from the media easier than other forms of transmission,
especially in the presence of noise. One important advantage of Differential Manchester
is that the transformed binary signal has no direct current (DC) component, and can be
coupled. Also, a Differential Manchester signal has a mid bit transmission that can be
used to convey timing information along with the data being transmitted [8]. By
encoding timing information along with the transmitted signal, the synchronization of
clocks and decoding of the message are simplified. A logic one is produced when the
polarity of the leading signal is opposite the polarity of the trailing signal, and a logic
zero is produced when the polarity of the leading and trailing signals is the same.

CRC

Finally, the data link layer provides cyclic redundancy checking (CRC) to ensure that the
message is free of errors. The sending node computes the CRC on each outgoing packet
with the generating polynomial X16 + X12 + X5 + 1 and places the remainder from the
calculation in the header of the outgoing packet. The receiving node then calculates the
CRC on the incoming packet and compares its remainder to the remainder in the header.
If the two remainders match, then the incoming message is error free. The CRC used in
the Lon-Works network provides detection of error bursts up to 16 bits in length and
99.9% of error bursts greater than 16 bits can be detected as well [8].

Layer 3 – Network Layer

Routing

The final layer that this project concerns itself with is the network layer. The main
function of this layer is to allow messages to traverse the network by way of routing.
Routers are either configured or can learn where different addresses on the network are
by observation. When a packet is received the router consults its routing table, a list that
contains address locations relative to the router, and forwards the message along in the
direction of the desired address. In the case of the ANSI 709.1 Lon-Works protocol, a
router also has the ability to optionally forward priority messages ahead of messages of
normal priority. Moreover, Lon-Works routers allow messages sent from nodes without
access to priority slots, but with the priority bit set, to be forwarded as priority messages
if the router has a priority slot that is currently empty. If the message has the priority bit
set but there are no available priority slots, the message will be forwarded in the normal
manner. Another function of the network layer is to support unicast, multicast, and
broadcast messages. By sending a message to multiple nodes simultaneously the time
required to send multiple redundant messages is eliminated.

 16

Protocol Operation

Background Information

Before Lon-Works can be extended to higher order systems with more nodes, the lower
layer implementation of the Lon-Works protocol must be understood. This preliminary
network analysis is compiled based on the information found through literature searches
of white papers written by the Echelon Corporation, analysis of the LONTalk protocol
specification ANSI 709.1-A, Electronic Industries Alliance specification, and other
information obtained through Echelon’s web site, http://www.echelon.com/ [3,5,6,7].

With the release of several white papers on the LONTalk networking protocol and a
reference implementation by Adept Systems Inc, the LONTalk Protocol has transitioned
from a proprietary specification to an open networking standard available as ANSI 709.1-
A. Much of the background research contained in this paper seeks to give a concise
picture of the lower level operation of ANSI 709.1-A. This information is not contained
in any one source, which makes the comprehension of ANSI 709.1-A difficult without in
depth study. This report conveys the information contained in ANSI 709.1-A and other
previously proprietary specifications in a single source that allows the reader an in depth
look at the LONTalk Protocol.

In order for the Lon-Works network to be fully understood, several key definitions and
diagrams must first be explained. This analysis concerns itself only with the lower levels
of the protocol stack because these levels describe how a node places a packet of data
onto the physical media.

Echelon implements this in the MAC (Media Access Control) layer with a collision
avoidance protocol known as predictive p-persistent CSMA, (Carrier Sense Multiple
Access). CSMA is preferred over other types of MAC because it allows a truly
distributed real time control system to be implemented. In other types of MAC, such as a
token passing ring, a central control node or circulating token grants other nodes access
in a fair manner. For example, token passing rings work well for networks that do not
require continuity of service. Token passing rings require complex procedures to adapt to
changes in network topology that may occur when nodes are added or damage is
sustained. In these cases, a token passing ring must restart, wait for each node to shake
hands with its neighbors, and then create a new token before allowing access to the
medium. Moreover, a token ring network has the luxury of failing to a predetermined
state to diagnose any problems. The time associated with this reconfiguration is
unacceptable for a shipboard real time control system.

Carrier sense multiple access allows topology changes because there is no centralized
control for network access. By allowing each node to control its access to the medium, a

 17
truly distributed control architecture can be implemented. Furthermore, CSMA allows
many nodes to share a common medium with a low probability of a collision. On a Lon-
Works network there is only a 4% collision rate at 98% channel capacity [2]. Echelon
has implemented a variation of the traditional CSMA protocol in Lon-Works that
contains several advantages. First, Lon-Works dynamically adjusts the number of Beta2
slots over which the nodes contend in order to decrease the likelihood of a collision. By
dynamically adjusting the number of Beta2 slots a normal distribution of network delay
times is obtainable. Some CSMA protocols, such as Ethernet, have the problem of large
increases in delay time as more and more users try to contend for the media. This can
easily be seen on a home pc that is connected to the Internet during times of high network
usage. Its speed compared to the same Internet connection during off peak hours is
greatly reduced. Lon-Works, on the other hand, minimizes degradation in network
performance as network traffic increases. This makes Lon-Works especially well suited
for distributed real time control.

Figure7-Busy Channel Packet Cycle [3]

In order to understand the predictive p-persistent CSMA algorithm key components of a
packet cycle must be introduced. Figure 7 is important because it shows graphically the
parts of a typical busy channel packet cycle. Beta1 is the period immediately following
the end of a packet and is used to ensure that communications have ended before
attempting to place another packet on the network. Although Beta1 can take on many
different values based on media type and other tuning parameters, it will always be
constrained by Beta1>1bit time+(2 * τ p + τ m) where τ p is the physical propagation
delay and τ m is the detection and turn around delay in the MAC sub layer. Beta2 is a
randomizing or contention slot whose value is equal to CT * (40 + 20 * v) where CT is a
media specific time base between 600ns and 9.6us and v is a tuning parameter on the
interval 0…255. Beta2 is also defined as always being greater than (2*τ p+τ m).
Priority slots, which each have a width of Beta2, are the final component of the packet
cycle. Nodes with important functions may be given access to priority slots to speed up
delivery of time critical messages. Nodes may be assigned distinct or shared priority
slots, but the maximum number of priority slots will not exceed 127. In most cases, each
node will be assigned its own unique priority slot because contention for a priority slot
results in a collision. If two nodes were assigned the same priority value and tried to
transmit a packet there would be no way to avoid this collision since priority slots are not

 18
contended for. One of the few cases where nodes would be assigned the same priority
value is when a network management tool is being used. Since the network management
tool would never ask two nodes to transmit at once, there is no chance of more than one
node attempting to transmit in the same priority slot. [3,5,6,7]

One point that must be understood about the division of the busy packet cycle into slots is
that each slot, although visualized as having a specific width, is actually defined by a
time value. Lon Works CSMA is implemented so that there are an integer number of
time delay slots over which the nodes randomize. This means that if a node wishes to
transmit in the 3rd priority slot it must first wait a Beta1 time in seconds and then also
wait for 2*Beta2 time slot seconds to pass [3].

Now that the basic definitions have been covered, the operation of the MAC layer can be
discussed in greater detail. Media access procedures depend on the state of the network.
In order for layer two of the protocol stack to know the network state, however, there
must be communication with the physical layer. Lon-Works does this through the use of
several requests as show in Figure 8. Data is shared among layers of the network by
simply requesting it. The link layer, for instance, after verifying that the message is
complete, would call the Frame_OK primitive, or function, in order to pass the back log
information from the received message to the MAC sublayer. By simply calling a
function, layers of the protocol stack can pass information quickly and easily.

Figure 8 – Physical Layer Interaction [3]

One advantage of a CSMA based MAC is that it may be implemented using a full duplex
method, as Lon-Works is, so that listening and sending are separate, concurrent actions.

 19

Node Receiving

Each node on the Lon-Works network has the ability to monitor the network at all times
for transmissions. Figure 9 shows that upon detection of a transmission, the node will
synchronize on the pre-amble of the packet and determine who the packet is for. If the
packet is for the node, then it will process the packet and deliver the message to the
appropriate destination within the node. If the packet is not for the node, synchronization
will be maintained for at least the remainder of the message as well as Beta1, all of the
priority slots, and Wbase randomizing slots [3].

Figure 9 – Node Receiving

Node Monitoring
the Network

Synchronize on
the Pre-Amble

Is This Mesage
For Me?

Process Incoming
PDU

Remain in Synchronization
for Remaining Message,
Beta1, Priority Slots, and

Wbase Randomizing Slots

Transmission
Occurs on the

Network

Yes

No

This Process is running when
any Transmissions are on the

Network Whether the Node
has a Packet to Send or not

 20
Network Busy With Message To Send

Figure 11 depicts the logical process that each node performs to send a message when the
network is busy. In this case, the node will first wait for the end of the current message
transmission and continue to wait for one Beta1 slot to ensure that the network is idle.
Since all nodes are synchronized on the previous packet cycle, each node will end its
Beta1 slot at essentially the same time. This synchronization among nodes helps to
eliminate the chance of a collision. Throughout the Beta1 period, the node must be
listening to the network to see if any other transmissions are occurring on the network. If
a transmission is detected, the node will try to receive the incoming packet and will hold
its packet until the new transmission has terminated. After sensing an idle Beta1 period,
the node will attempt to send the packet as either a priority or normal packet. This is
determined by checking the L2Hdr, Figure 10, which contains a 1 bit priority (Pri) field
that tells the layer how this message is to be sent. The L2Hdr is an 8 bit section of the
Link Protocol Data Unit/MAC Protocol Data Unit (LPDU/MPDU) frame that contains
information necessary for the complete transmission of a packet. The L2Hdr includes the
delta back log (BL) which contains information on how much message traffic will be
generated by the transmission. The cyclic redundancy check which is computed over the
entire network protocol data unit (NPDU) and is generated using the International
Consultative Committee for Telephone and Telegraph (CCITT) CRC-16 standard
polynomial of X16+X12+X5+1 is also contained in the L2Hdr [3,8].

Figure 10 - LPDU/MPDU [3]

The advantage to using a protocol data unit structure is that each node knows specifically
where to locate information that is needed to process the packet. Appendix C contains
the complete protocol data unit summary for each layer of the OSI model and shows the
location of each piece of information located within a Lon-Works packet.

If the packet to be sent is a priority message, the node must first determine if the node
sent a priority packet during the previous packet cycle. This is done to ensure that other
nodes will not be barred from transmission by a node with several high priority packets
queued to send. If a node did not send a priority packet during the previous packet cycle
it will simply wait for the correct priority slot, and, if the network is still idle, send. In
the case where a priority packet was sent, the node must carry out a fairness algorithm.
The node will wait for all priority and randomizing slots to expire and if the medium is
still idle send out its packet. If a packet is detected on the network while waiting for the

 21
priority and randomizing slots to expire, then the node will try to receive the
transmission. When the transmission ceases, the node will carry out the normal Beta1
period, wait, and then normally attempt to access the appropriate priority slots.

For a packet of normal priority to be sent, a different route is taken to place the message
on the network. First, the node must wait for all of the priority slots to expire. The node
will continue to wait a random delay Td that is on the interval (0…(BL*Wbase)-1). BL is
the integer backlog estimate between 1 and 63, and Wbase is the number of randomizing
slots in the base randomizing window. The BL is calculated by each node through the
examination of the headers that pass through the network. Each L2Hdr field contains
information about the amount of message traffic that will be generated as a result of
packet delivery. Because most Lon-Works messages require acknowledgements, this is
an effective way to predict future message traffic. By dynamically adjusting the BL
value, each node decreases its likelihood of a collision upon transmission. The value Td
is a delay time in seconds that corresponds to a randomizing slot. If when Td has expired,
the network is still idle, then the node may send out a packet. Figure 11 shows the flow
chart for a node that wishes to send a packet while the network is busy and allows the
decision process to be visualized [3].

 22
Have a Packe t t o

S e n d

Is Th is a
Prior i ty

M e s s a g e ?

I f a High Pr ior i ty Packet is
Genera ted w / in a Node i t

W i l l be Sen t Be fo re Nodes
of Norm a l Prior i ty

W ait for Co r rec t
Pr ior i ty Slot

W ait for Pr ior i ty
S lots to Expi re

Genera te a
R a n d o m D e lay T

Is the
C h a n n e l

Id le?

W ai t For the End
of Cur ren t

M e s s a g e B e i n g
T ransm it ted

Car ry Ou t Be ta1
Per iod

Beg in Send ing
Pre -Am b le

Y e s

N o

N o

Y e s

N o

Y e s

D id a
T ransm iss ion
Occur Dur ing

the Be ta1
Per iod?

D id Th is Node
T ransm it a Prior i ty
Messge Dur i ng t he

Prev ious Packe t
Cyc le?

W ait for Pr ior i ty
S lots to Expi re

W ai t for the
R a n d o m iz ing Slots

to Expire

Is the Network
B u s y ?

Y e s

N o

N o

Y e s

Figure 11 – Node With Message to Send – Busy State

 23
Network Idle With Packet To Send

Another media access case occurs when a node is trying to send out a packet and the
network has been idle for a long time. This case is shown in figure 12. Because Lon-
Works obtains synchronization information from packets that are placed on the network,
synchronization cannot be maintained if the network has been idle for longer than
[Beta1+priority slots+Dmean]. Thus a different access method must be used. In this
case the node will carry out the Beta1 period and if no transmissions are detected send
out its message immediately. If a transmission is detected during the Beta1 period the
node will send the message using the busy network case [3].

Figure 12 – Node With Message to Send - Idle State

Reliability Analysis

In order for a topology to be suitable for use aboard a naval combatant it must be cost
effective, extremely survivable, and also highly scalable. A topology that is scalable is

H a v e a P a c k e t to
S e n d

D i d a T r a n s m is s i o n
O c c u r D u r i n g t h e

B e t a 1 P e r i o d ?

I s t h e
C h a n n e l

I d l e ?

C a r ry O u t B e t a 1
P e rio d

N e w o rk i s B u s y

B e g i n S e n d i n g
P re -A m b le

Y e s

N o

N o

Y e s

C h a n n e l S ta te is
R e p o rte d a s L o w

A tte m p t
T r a n s m i s s i o n

U s i n g B u s y
N e tw o r k M o d e l

 24
one that may be implemented without network degradation on both networks with few
nodes and on networks with thousands of nodes. By assigning reliability values to nodes,
routers, and links, each network reliability calculation can give insight into the
effectiveness of a particular network topology.

Linear bus reliability was determined by assigning a reliability of .5 to each node and
physical link. Figure 13 shows the rapidly decreasing reliability of a linear bus as the
number of nodes increases. This is highly intuitive because as you increase the number
of nodes, the probability of a failure in some part of the network increases, thus
decreasing your overall reliability.

A ring topology is merely a bus topology that is looped around to allow transmission to
occur in both directions. This is a cost effective improvement to a linear topology
because you are only increasing your cost by one connection, while doubling your
survivability. This increase in survivability is readily observable in Figure 13, which
contains a plot of both a linear bus and ring topology. It is apparent that the ring
topology has nearly twice the reliability of a bus topology for the same number of nodes

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of Nodes vs. Reliability# of Nodes vs. Reliability

For Linear Bus, Ring, and Mesh Topologies

Nodes

R
e

lia
b

ili
ty

Ring
Bus
Mesh

Figure 13 – Reliability vs. Number of Nodes

In a mesh network, each node is connected to every other node in the network and the
overall reliability of a mesh topology increases as nodes are added to the network.
Although meshes are extremely survivable and reliability increases with additional nodes,

 25
they are not scalable since the number of mesh connections is (1)!nodes − . This is not
a problem for networks with few nodes, but when a network with twenty nodes is
considered the problem becomes obvious. For example, to add the 20th node to a system,
you must add nineteen additional paths. Furthermore, with twenty nodes there are
121645100408832000 connections, which is unreasonable for implementation.

One way to obtain a practical, robust, network topology is to place nodes onto rings and
then create a partial mesh of these rings. This allows a network to support many nodes
without adding nearly exponentially increasing numbers of connections. Furthermore, it
can be seen from Figure 14 that you can place several nodes on each ring without a
substantial degradation in network performance. This is evidenced by comparing the
reliability value of a full mesh topology with five nodes to the reliability of a mesh of six
rings having five nodes on each ring. The full mesh topology only has a reliability of
0.158 greater, even though it has twenty-five fewer nodes. The mesh topology does,
however, increase in reliability at a much faster rate, although the small number of nodes
possible on the mesh network overshadows this advantage.

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Reliability of Mesh of RingsReliability of Mesh of Rings
R = .5, N = .5

Rings

R
e

lia
b

ili
ty

Figure 14 – Reliability vs. Number of Rings

 26

Hypercube

In small networks with very few nodes the topology of the network has little effect on the
reliability of message transmission. Since there are so few points of failure, due to the
small number of physical connections, almost any topology will provide the redundancy
and structure needed for reliable communication. The opposite is true, however, in large-
scale systems. Since the number of physical connections dictates the physical
transmission reliability, the more refined the topology and the fewer hops, or segments, a
message must traverse, the more likely the message is to get to be transmitted without
error.

While analyzing the YP 679 topology of a semi-mesh of rings an interesting topology
surfaced that is more effective for large-scale systems. The semi-mesh is extremely well
suited for small-scale systems, but it is not as effective as a hypercube for networks with
large numbers of nodes. Although the semi-mesh topology is scalable, in order to
maintain an average of three links per ring as initially proposed, the expansion of the
network looks rather chaotic. The current YP 679 configuration, where each ring has
been shrunk down to a node for clarity, is shown in figure 15.

Figure 15 – Existing YP 679 Semi-Mesh Topology

Although there is some order in the network the semi-mesh topology guidelines are not
followed as some rings have more than three links. Furthermore, with only eight rings,
there are several node combinations that result in long message transmission paths. Since
it is desired that each ring have on average no more than three connections, the lack of
order in the network forces it to expand. The hypercube of rings, as shown in figure 16,
is an alternative to the semi-mesh of rings topology and allows a more structured
topology to be implemented.

 27

Figure 16 – YP 679 Topology Implemented as a Hypercube

The advantage of this topology is that as the number of nodes increases, the hypercube’s
structure maintains a low number of hop counts. This can be seen in Figure 17 where the
semi-mesh and hypercube topologies are shown with twice as many rings as on YP 679.
While the semi-mesh of rings topology expands because of the connectivity restraint of 3
connections per node, the hypercube of rings topology stays compact and is able to add
several short cut paths that allow messages to quickly traverse the network.

YP 679 Semi-Mesh
Topology With Twice as
Many Nodes

 28

Figure 17 – Expanded Semi-Mesh and Hypercube Topologies

Preliminary research was conducted on three topologies, the full mesh, semi mesh, and
hypercube. Data was obtained by using Monto Carlo Analysis which is ideal for systems
where measuring data is nearly impossible. Monto Carlo Analysis is based on the central
limit theorem. If you take a large number of test cases, the values will begin to converge
upon the correct answer due to the central limit theorem. In the case of the full mesh,
semi-mesh, and hypercube a Monto Carlo analysis was done for networks containing
between one and twenty nodes. Ten starting and terminating nodes were chosen for each
case and the average number of hops computed. Multiplying the number of nodes in the
current network by a uniformly distributed pseudo random number that is rounded to the
nearest whole number chose starting and terminating nodes. These values were
computed using MATLAB and thus cannot be considered entirely random since some
pattern does exist albeit only after millions of cases have been evaluated. The data in
Appendix E shows several important trends. Figure 18 shows that the number of
physical connections in the network remains relatively close for both the semi-mesh and
hypercube topologies. For a given number of nodes the number of physical connections
in the network is nearly the same for each topology with the hypercube having on
average one or more fewer paths than a semi-mesh.

Hypercube Topology With
Twice as Many Nodes

 29

Figure 18 – Number of Network Connections

If each of the nodes in the Monto Carlo analysis is considered to be a ring with ten nodes
then nearly two hundred nodes could be contained in a system of twenty rings. If this
system is to be implemented for a large-scale system with thousands of nodes, however,
the divergence can be seen in Figure 19. This divergence becomes greater as nodes are
added to the systems, showing that the hypercube of rings topology increases reliability
for large scale systems by keeping the average hop count low.

Figure 19 – Average Hop Count

Number of Network Connections

0

5

10

15

20

25

30

35

40

0 5 10 15 20

Nodes

C
o

n
n

ec
ti

o
n

s

Number of Semi-Mesh Connections

Number of Hypercube Connections

Average Number of Hops

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 5 10 15 20

Nodes

A
ve

ra
g

e
H

o
p

s

Semi-Mesh

Hypercube

Hypercube
Topolyg Best Fit
Line (Log2)/2

Semi-Mesh
Topology Best Fit
Line

 30

By projecting the best fit lines for each topology out to the case where one hundred nodes
are present, as seen in Figure 20, the divergence of the average hop count becomes very
large. For the semi-mesh and hypercube, straight and (Log2 / 2) best fit lines
approximate this projection most accurately. If, as would be implemented on a large-
scale system, each node in the analysis is considered to be a ring with ten nodes in the
real system, only 1000 nodes are present in the projection. This is nearly 102 fewer nodes
than would be found on a standard U.S. Navy ship showing that for large-scale systems a
hypercube of rings is a good topology selection.

Figure 20 – Projection of Average Hop Count

Lon-Works Network Fragment Healing Components

Nodes

There are three main components found in LONTalk networks that implement network
fragment healing: nodes, routers, and sentinels. The node, which is the element where
data transmission originates and terminates, is the most common element found in
LONTalk networks. Specifically, a LONTalk node combines local and network
processing into a single micro-processor. A typical node would be connected to one or
more sensors or actuators and performs functions coded in Echelon Neuron C. Nodes
play a very important role, as they are responsible for generating, receiving, and
processing messages in the network.

Average Number of Hops

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

0 10 20 30 40 50 60 70 80 90 100

Nodes

A
ve

ra
g

e
H

o
p

s

Semi-Mesh

Hypercube

Hypercube
Topology Best
Fit (Log2)/2

Semi-Mesh
Topology Best
Fit

Average Hop
Value Over 16

Average Hop
Value Just
Under 4

 31
What makes LONTalk nodes different than nodes in other control networks is that
embedded intelligence has been added in a low cost fashion. Because of the embedded
intelligence, nodes are able to evaluate their performance and correct problems when they
occur. For example, a node might automatically recalibrate attached sensors. Embedded
intelligence also allows nodes to continue operation when they become separated from
the network by communications failures. Nodes on a LONTalk network are responsible
for sending messages without the use of a token or other signaling mechanism.

Routers

A router is the component responsible for passing messages between network rings. In a
LONTalk system with network fragment healing, a router is a node connected back to
back with another node through their I/O ports. A router can be thought of as a means by
which messages pass between different sections of the network. Routers inspect the
destination address of messages and then consult a routing table to determine if these
messages need to be forwarded to the adjacent ring. A routing table contains information
on which messages a router should forward, and which messages should be not be
forwarded. This routing information is important because the LONTalk protocol does
not support multiple paths between source and destination nodes. Each router has a
specific routing table which reveals exactly one path between any two nodes. By
manipulating the information in the routing table, sentinels control the network
configuration. Since sentinels know the physical topology of the network and have the
ability to change routing tables, multiple paths can be hidden from the protocol and
unmasked in order to reroute messages. Although the physical topology of the network is
statically defined, the sentinels can dynamically perform network fragment healing by
enabling one of several alternate paths.

If after consulting a routing table, a message is flagged for forwarding, the router
forwards the message to the adjacent ring router. On the adjacent ring, the forwarded
message contends with any other pending messages for a transmission slot. The YP 679
network uses LONTalk configured routers. Configured routers are different than other
types of routers in that the routing table is explicitly configured to enforce a specific
network topology. Configured routers are well suited for network fragment healing
because they will not actively search for the network topology which would lead to the
discovery of latent multiple paths. Sentinel network management messages maintain
each routing table so that the physical topology redundancy is hidden from the LONTalk
protocol.

LONTalk priority message compliant routers allow nodes that are not given access to
priority slots the ability to request that messages be forwarded as priority messages.
When these messages reach routers and are queued they are transmitted before any
normal priority messages. This allows nodes of normal priority to ensure that time
critical messages are forwarded quickly.

 32
Sentinels

Sentinels are another important component of a Lon-Works network. Sentinels, like
routers, are specialized nodes that are responsible for maintaining the physical topology
seen by the Lon-Talk Protocol. Sentinels monitor the network both actively and
passively in order to ensure that no faults are present. If faults are detected the sentinel
takes action to remedy the problem in order to ensure reliable data transmission. Because
sentinels maintain the physical connections seen by the protocol, fragmented sections
must have access to a sentinel in order to reconfigure the routers and change message
paths. Thus, each segment has a sentinel and each sentinel on a ring is given a priority in
order to assure that only one sentinel, the highest priority, is active at any given moment.

When a sentinel determines that a fault may have occurred it takes actions to explicitly
determine if and where this break has occurred. By using an imbedded “intelligent
switch” the sentinel can break the network on one of its sides, turning the ring into a bus.
By sending a message requiring acknowledgment to the farthest node on the bus the
sentinel can see if all nodes are intact. If the farthest node does not respond the sentinel
works backward and sends messages until a node responds. The sentinel now knows that
this is where the break has occurred. In order to ensure that the ring has not become
segmented the sentinel must also perform the same test on the ring from the opposite
direction. This is possible by breaking the network on its opposite side using the
“intelligent switch.” The sentinel then performs the same actions to determine if and
where another break has occurred.

Sentinels also have the capability to detect faults passively. Since actively breaking the
network after a fault has occurred would further fragment the network, sentinels listen for
status heartbeats from the nodes on the ring. Heartbeats sent from nodes are used similar
to a human heartbeat in determining node status. If several adjacent nodes do not
transmit heartbeats, then a fault may have occurred on the network and will be
investigated, much like a pulse is a good indication of human status.

Sentinels not only check for faults on the network, but also communicate to other
sentinels about what state the network is in. By sharing information on node status and
network breaks sentinels can choose healing paths more intelligently. Also, if sentinels
did not communicate with each other then there is a possibility that multiple sentinels
could break and ping the network at once. By passively sending heartbeats on the
network, sentinels can determine the state of other sentinels on the ring and act
accordingly. If there are sentinels of higher priority sending heartbeats, a lower priority
sentinel stays passive. If a higher priority sentinel quits sending heartbeats, however, the
next lowest priority sentinel assumes the responsibilities of network reconfiguration.
This method of passing information allows the sentinels to know what other sentinels are
active while allowing the receipt of heartbeat messages.

Although sentinels are responsible for examining the physical status of the ring they also
ensure that there are no faults between rings by sending messages to active sentinels on

 33
adjacent rings. This allows both the ring path integrity and inter-ring integrity to be
known.

Sentinels are the backbone of network fragment healing because they know the physical
topology of the network. When faults occur, sentinels locate the faults and send
information to the routers so that messages can be rerouted around damage. Any changes
to the topology are passed between sentinels so that router tables can be updated and
continuous communications can be achieved.

Lon-Works Enhancement

Lon-Works is a feature rich, low cost, industry proven, commercial networking standard
for distributed control systems. However, Lon-Works has one fundamental limitation for
mission critical military systems. Since the LONTalk protocol does not allow multiple
communication paths, Lon-Works is not survivable. Network fragment healing adds
essential survivability by providing redundant communication paths that are hidden from
the LONTalk protocol.

As can be seen in many of the topologies introduced, multiple paths are essential if
network fragment healing is to take place. If, as Lon-Works in its commercial form
requires, only one node to node path exists then there would be no way to route messages
around damage sustained by the network. Thus, the redundancy that must physically
exist in a distributed environment is required to be masked from the LONTalk protocol.
Having routers maintain only one specific path between any two points on the network
can achieve this. By declaring the path that messages between two nodes must take, the
LONTalk protocol can function normally. When damage occurs, the path between the
two nodes declared in the routing table can be changed, effectively hiding the multiple
paths from the Lon-Talk protocol. Figure 21 shows that there are many paths between
nodes A and B. Since the Lon-Talk protocol does not support these multiple paths a
router statically declares a path that messages between the two nodes will use. In this
case router 3 will forward all messages between nodes A and B. If network damage is
sustained and router 3 is no longer available to pass messages, a new path is declared
through routers 1 and 2 for messages traveling between nodes A and B. This example
shows that although multiple paths can exist between two nodes on a Lon-Works
network, these paths may be made unavailable in order to comply with the LONTalk
protocol.

 34

Figure 21 – Small Network With Multiple Paths

Reasons For Modeling

Although network fragment healing has been installed and tested on small-scale systems,
there is a need to advance these findings to support larger networks with thousands of
nodes. Physical testing is powerful tool in evaluating small-scale systems because it
allows the network to be evaluated and the problems inherent with any system to surface.
Unfortunately, building large-scale research systems with thousands of nodes is
impractical because of the overhead associated with construction and troubleshooting.
The use of simulation software, however, allows higher order systems to be implemented
quickly at a much lower cost.

There are several advantages to using computer models instead of large-scale systems.
Models allow data flow to be studied much more closely since the network simulation
can be stopped and evaluated at any instant in time. Furthermore, by creating a model of
the communication protocol’s inner workings, limitations and strengths of a system come
to light since the protocol must be analyzed in great depth. Computer models also allow
the user more complete control of the network and its actions since parameters can be
changed with a few keystrokes. This notion of changing system parameters quickly also
allows the user to scale the computer model and resize the simulation by including more
nodes. The user can also control message traffic generation, allowing more accurate
simulation of specific network scenarios such as network fragmenting, and high volumes
of network traffic to be studied. Finally, modeling offers simulation results that can be
made independent of protocol stack processing time, transmission time, and message
queuing times.

Router
s

Node A
Node B

1

3

2

 35
Network fragment healing currently performs well in ensuring reliable network
communications but several improvements could be made. By advancing the algorithms
used to control network fragment healing, system reconfiguration time can be improved.
Currently, when the network reconfigures, the shortest physical path between two nodes
is chosen as the healing path. This, however, may not be the path with the shortest
message delivery time. If the path chosen has very heavy traffic associated with it,
communication can actually be slower. Also, the chosen path may not be the most
reliable path due to its physical location. Some messages are more important than others
and it is desirable for them to traverse a path that has less chance of being damaged.
Because of this, a new algorithm for network fragment healing that includes message
traffic calculation, shortest path distance, and reliability must be used to ensure the
highest level of communications continuity.

Software Design Considerations

Computer modeling is an effective way to simulate and evaluate network communication
protocols. There are several design considerations that must be evaluated before a
simulation platform can be chosen. First, LONTalk is a highly distributed control system
where no one node or group of nodes controls the flow of information. In LONTalk,
processing capabilities have been pushed down to the lowest level to avoid single points
of failure. This distribution of processing also enables continuous intelligent operation at
the nodal level during casualty conditions. Distributed control offers greater reliability,
but is more difficult to develop and simulate. An early simulation design consideration
was the use of software packages that support distributed environments.

Furthermore, LONTalk nodes, the lowest level of the control system, have embedded,
highly intelligent processors that control all facets of message generation, transmission,
and processing. This means that there is no central access scheme, such as a token being
passed, which grants nodes access to the network. Instead, each node autonomously
attempts to send messages while avoiding collisions with other transmissions. The ability
of a software package to simulate this asynchronous nature of LONTalk messaging is
critical in creating a realistic model of the YP 679 communications.

Finally, a major consideration when choosing a software package is the learning curve
associated with it. There are literally hundreds of programming languages available
today, many of which are appropriate for modeling network communications. The
language chosen, however, must be one that provides modeling flexibility while
minimizing the time associated with learning a new programming language. If the
learning curve is too great, the time available for coding the model will be dramatically
reduced.

 36
Commercial Package

Commercially available network simulation software packages are one alternative to
developing a new network simulation program. Commercially available packages allow
networks to be quickly configured and evaluated, but are typically only written for
common protocols such as TCP/IP, token rings, and CSMA/CD. Since LONTalk is a
very specialized network protocol, there is no simulation package available to quickly
create and test LONTalk Network Fragment Healing networks. Furthermore, existing
simulation software packages would require extensive modification to incorporate
LONTalk Network Fragment Healing features. Such extensive modification would be
very time consuming considering the learning curve associated with understanding the
inner workings of an existing software simulation package. Furthermore, commercial
network simulation packages are relatively expensive and often cannot be modified by
the end user.

MATLAB

Another promising software package evaluated was MATLAB, from MathWorks, Inc.
This platform was a natural choice because it is widely used in industry and has many
built in functions for the interpretation of data. It does not, however, offer any features to
model the asynchronous nature of Lon-Works. MATLAB “m” or script files are
implemented within a single source code file. Furthermore, MATLAB provides limited
messaging facilities and does not support the use of header files. This means that the
LONTalk asynchronous message passing features would have to be developed from
scratch. This could be accomplished by creating functions to emulate message passing
and asynchronous processing but this would have to be done in addition to writing the
network model code, taking away research time.

Python

Since several software packages met the design criteria, a significant research effort
involved the determination of which one to use. The first programming language that
was considered in depth was Python, a scripting language written in C that is available as
freeware at www.python.org. Python offered several advantages for modeling distributed
control including threads and micro-threads. Python threads share the processing power
of the computer, allowing multiple programs, or sections of code, to be run at the same
time. Python threads allow the asynchronous nature of the Lon-Works network to be
programmed in a single piece of Python source code. Python was recommended by Dr.
Sam Smith of Adept Systems Inc., since threads and micro-threads could be used to
implement nodes, routers, and sentinels. This model of the network was very attractive
but the use of the Python language offered several disadvantages for this project.

Python is a very specialized new language that is distributed as freeware and is
commercially unsupported. As freeware, the license to use this software is obtained free
of charge at the Python web site. A freeware software package raises significant

 37
questions concerning up to date software patches, documentation, and support. With
comparatively little language documentation available, the Python learning curve was
expected to be higher than other better documented programming languages. Therefore,
the advantages of Python were judged to be outweighed by the risk of using
developmental software with an unknown learning curve. Furthermore, Python is not a
widely used programming language so future applications of Python are uncertain. In
conclusion, Python would have offered a great challenge to a beginning programmer
trying to simultaneously learn a new language and model a Lon-Works network.

C++

Another language that offered several advantages is C++. This language is very popular
and is well documented. Moreover, as a general purpose language, C++ imposes few
design constraints on the simulation of the LONTalk networking protocol.

C++ is an object oriented programming language meaning that it has built in capabilities
to model real world objects. Furthermore, C++ classes allow new objects to be defined
as extensions of existing object classes. Classes can communicate with each other
through the use of messages in a manner that is analogous to network communication.

C++ is also a multitasking environment that allows asynchronous processing to be
implemented as independent tasks or threads. Threading allows the asynchronous nature
of nodes to be realistically modeled within a single task. In addition, several source files
and their respective header files can comprise a project and be compiled into one
executable.

The main reason that C++ was chosen as the base programming language is its relation to
the C programming language, which had already been studied in previous work. This
decreased the learning curve to an acceptable level. Furthermore, C++ is widely used
and help can be obtained from many sources.

Borland C++ Builder vs. Microsoft Visual C++

Since C++ is a very widely used programming language there are many different
software packages available for writing and compiling C++. Microsoft Visual C++ and
Borland C++ Builder are both fully capable C++ compilers but offer several advantages
beyond C++ compilation and debugging. Both packages offer advanced visual shortcuts
to implement user interfaces and other graphical tools associated with the Windows
environment. This allows the network model to be controlled by physical components
like in other Windows based applications.

Both software packages are very similar in debugging, support, and other basic
characteristics and are consistently some of the best C++ compilers on the market.
Microsoft Visual C++, however, has an enormous learning curve associated with it. The
programmer must explicitly code all graphical user interfaces and the overhead required

 38
to learn these functions is large. Borland C++ Builder, on the other hand, offers a
visual component library that holds pre-made functions and shortcuts that make the
creation of user interfaces and graphical displays easy. Borland Builder contains a
special window, called a form, where objects can be placed. Borland Builder then in turn
creates the code required to implement this object in the source file and the object is
quickly added to the application. This drag and drop capability speeds software
development and removes the problems associated with visual object creation.
Moreover, Borland C++ Builder has very good support on both the web and via phone.
Finally, Borland C++ Builder is licensed by the United States Naval Academy, allowing
its usage by students and faculty members. This eliminates the need to purchase this
software with research funds.

Procedure

A LONTalk network is a distributed control network that can contain hundreds or
thousands of asynchronous nodes. This asynchronous behavior must be modeled to
accurately reflect distributed communication and control. Borland C++ Builder was
chosen because of its capability to support distributed asynchronous processes and
threads. Threads are independent, schedulable software entities that coexist within a
single process and address space. Discussions with Adept Systems Inc. and literature
searches led to a decision to use threads. Initially, it was believed that threads could be
used to readily emulate the asynchronous behavior of LONTalk nodes. Specifically,
node threads would send messages to ring threads, which would in turn pass the
messages to the appropriate destination node and ring. Although this is a simplification
of the LONTalk protocol, it accurately models the asynchronous nature of nodes and
messages that travel along one or more rings before arriving at the intended destination.
Messages would be passed between these threads using message posting methods, or
functions, built into the C++ language. Nodes could then simply designate a message
number, fill a message structure with information, and then post their message
transmission. By invoking a complementary retrieval method, destination rings or nodes
would receive the posted message. Since threads share a common address space,
messages could be passed by reference, and would not need to be physically copied at
each intervening step. Unfortunately, the Windows threading model is limited to a
maximum of sixteen threads, severely limiting the scalability of this network mode. This
constraint prevented nodes from being implemented with threads in the network
simulation.

Using the knowledge learned in the first iteration, a new model was created based on
multiple threads within multiple processes. In this model each ring would be a separate
process, with nodes implemented as threads within each of the applications. This model
built upon the knowledge initially learned and included an interactive graphical user
interface which takes advantage of the Borland C++ Builder Visual C Library. This
model allowed each process to have its own graphical interface containing start and stop
buttons for the ring, and a memo box to log incoming message information. The message
statistics could then be analyzed to find message latency between network nodes. In a

 39
manner analogous to the first simulation model, this method transmits messages by
invoking inter-process message passing methods. After some research, it was determined
that the Borland inter-process message handling was quite complex and beyond the scope
of this investigation.

In order to get away from requirement to use Windows messaging methods, another
simplification of the model was made. Without losing any functionality, threads could be
used to represent rings in the network. Although threading constraints kept the maximum
number of rings at sixteen, this is enough to adequately model the network and still allow
manipulation of the algorithms and topology to be studied. Since Borland C++ Builder
does not support microthreads, each node on the ring would be modeled as a case.

All threads are created within a single source code and messages can be passed by using
global variables that are accessed with critical sections. By using critical sections,
threads are able to lock out other threads from a section of code that is currently in use. If
multiple nodes attempt to access a variable without the use of critical sections, there is no
way of ensuring that variable data will not be overwritten while in use. Critical sections
fix this problem by allowing threads to manipulate data safely. When a thread is done
using a section of code, it will leave the critical section and allow other threads access. If
critical sections are to be used, however, they must be used by all functions that have
access to that section of code. If functions are not forced to use critical sections, they
maintain the ability to manipulate the data at all times. This effectively negates the
advantages of using critical sections.

This model worked fine in theory, but the overhead required to learn threading was large.
Furthermore, a preliminary investigation into network models that used only basic C++
tools showed that a model of the Lon-Works network does not require complex
implementation.

After researching ways to further simplify the model, a final design iteration was created
for the Lon-Works network model. In order to simplify the simulation coding and take
advantage of the object oriented nature of C++, nodes and rings were to be implemented
as classes. Each ring would be a specific instance of the ring class, and be created with a
constructor. A constructor is a method associated with all classes that is passed
information in order to create an instance of a class. The information passed to the
constructor allows each instance of a class to contain information specific to that class
instance. Once an instance of each ring was created, the node constructor could be called
to create the number of nodes required on that particular ring.

This methodology took advantage of the fact that each router is just a special case of a
node. By changing the parameters of nodes, routers can be easily created and given the
information necessary to pass messages.

This design was also very streamlined in how messages were passed between different
nodes. A pool of message structures was created with two fields. The first declared

 40
whether the particular structure was in use, and the second contained a pointer to the
message being transmitted. This allowed a method to be called to find an open message
structure, and then flag that structure for use. When a terminating node receives a
message, the message structure is reset to show it is not in use, and then placed back into
the pool to be used by another node with a message to send. Also, by using the queuing
capabilities available in the Standard Template Library (STL), the structure containing
the message could be placed in the queue and sorted according to its priority. By using
the priority queue defined in the STL, messages can be easily sorted according the their
priority.

This model also allows the asynchronous nature of Lon-Works messaging to be
simulated. The average delay for nodes trying to send during a busy network state is a
normally distributed number of Beta2 slots. If non-priority messages are given priority
values between 1000 and 2000 and this value is then multiplied by a normalized,
normally distributed, random number, the messages placed in the queue will have a
normal distribution. This directly correlates to the LONTalk protocol, as nodes in a Lon-
Works network have no guarantee that their messages will be sent before any other node
of the same priority. Since the priority queue is set up to process the highest priority
message, this normally distributed insertion pattern would model the delays seen in a real
Lon-Works network.

Another advantage of this model is that data is not only written to the screen but each
message is also logged into a text file. This allows the message to be located at creation
and destruction and the latency to be calculated. This model also has a dramatically
decreased learning curve associated with it. By adequately compromising between
accurate simulation and minimum learning overhead the implementation of a Lon-Works
network simulation using C++ classes is very feasible.

Results

Currently, the simulation network does not work, however, great strides have been taken
toward completing a working model in the near future. With each day C++
comprehension improves and the simulation can be advanced towards the end goal of
data generation. With the completion of the simulation, the computer model data can be
correlated to YP 679 test data to verify that the simulation works properly. With a simple
model verified with actual data, the results obtained when the simulation is changed to
model more complex large scale systems are more accurate. This research continues to
be undertaken with the intent to complete the simulation in the near future.

 41

Synopsis

With the Navy’s commitment to reduced shipboard manning the effectiveness of
automated systems has become paramount. If sailors are to be replaced with automation
it must be dependable during the worst casualty conditions and provide the continuity of
communications service necessary to maintain operational readiness.

By implementing topologies that are inherently survivable, the number of messages lost
due to the physical medium will be dramatically reduced. These topologies cannot be
chosen based solely on their undamaged configuration, but instead must be evaluated by
their ability to provide the most effective structure for distributed control during casualty
conditions. A topology analysis was done on the Office of Naval Research test craft YP
679 in order to determine if the semi-mesh of rings topology is scalable to higher order
systems.

Algorithms that support network fragment healing must also be continuously evaluated
and advanced so that message latency and transmission reliability can be improved. By
allowing the network fragment healing algorithms to more intelligently determine how
messages are passed, the network becomes more and more distributed as decision making
is pushed down to the lowest level. In order to study large-scale network fragment
healing, a network simulation was written in C++ in order to model the asynchronous
messaging of a Lon-Works network.

Conclusions

The LONTalk protocol is well suited for distributed control applications.

Flow charts on a nodes send and receive processes were created after in depth technical
analysis of the ANSI 709.1A LONTalk networking protocol.

The semi-mesh of rings topology provides effective network fragment healing on YP
679. The proposed hypercube of rings topology improves network performance and
survivability for larger systems. This exciting discovery may have important
implications for the next generation of surface combatants.

Recommendations

In order to apply the results obtained in this research to large-scale systems further
research should be conducted in these areas:

§ More in depth Monto Carlo analysis of the hypercube and semi-mesh
topologies.

§ Conduct a reliability analysis of a hypercube of rings topology.

 42
§ Build on the C++ code written to complete network fragment healing

model.
§ Analyze Lon-Works network fragment healing message data to determine

network latencies, healing paths chosen after a break, and network congestion.
§ Investigate new healing algorithms for the network using the Lon-Works

model.

 43

References

[1] Blackwell, Luther M. “Data Multiplex System (DMS)-Aspects of Fleet

Introduction.” Naval Engineers Journal. Nov 1989: 41-47.

[2] Smith, Samuel. Survivable Shipboard CLIDCS Automation Infrastructure

Development. Feb 13, 1999.

[3] EIA-709.1-A Control Network Protocol Specification. Arlington, VA: Electronic

Industries Alliance: 1999.

[4] Echelon Corporation. LonWorks Marketing Bulletin “LonWorks 78kbps Self-

Healing Ring Architecture.” Aug 1993.

[5] Echelon Corporation. LonWorks Engineering Bulletin “LonTalk Protocol.” Apr

1993.

[6] Echelon Corporation. LonWorks Engineering Bulletin “Optimizing LonTalk

Response Time.” Aug 1991.

[7] Smith, Samuel, Kevin White, et. al. Final Report. “Dependable network Topologies

With Network Fragment Healing For C.O.I.D.C.S For Naval Shiboard
Automation.” Department of Ocean Engineering, Florida Atlantic University:
1999.

[8] Freeman, Roger L. Practical Data Communications. New York: John Wiley &

Sons, Inc, 1995.

 44

Bibliography

Adept Systems Inc. “A C Reference Implementation of the LonTalk Protocol on the

MC68360.” Jul 1998.

Anderson, T., et al., “Dependability: Basic Concepts and Terminology.” Dependable

Computing and Fault Tolerance. Ed. J. Laprie. Dec 1990.

Blackwell, Luther M. “Data Multiplex System (DMS)-Aspects of Fleet Introduction.”

Naval Engineers Journal. Nov 1989: 41-47.

Carnivale, J. A. DD-21 Presentation. Jan 1999.

Deitel H.M. and P. J. Deitel. C++ How To Program. Upper Saddle River: Prentic-Hall

Inc., 1998.

Dunn, Stan et al. Dependable Network Topologies With Network Fragment Healing For

C.L.I.D.C.S. For Naval Shipboard Automation. Feb 18, 1999.

Echelon Corporation “Introduction to the LonWorks System.” 1999.

Echelon Corporation. LonWorks Engineering Bulletin “Enhanced Media Access Control

with LonTalk Protocol.” Jan 1995.

Echelon Corporation. Echelon White Paper. “Determinism in Industrial Computer

Control Network Applications.” Jan 1995.

Echelon Corporation. “Determinism in Audio Computer Control Network Applications.”
Jan 1995.

Echelon Corporation. LonWorks Marketing Bulletin “LonWorks 78kbps Self-Healing

Ring Architecture.” Aug 1993.

Echelon Corporation. LonWorks Engineering Bulletin “LonTalk Protocol.” Apr 1993.

Echelon Corporation. LonWorks Engineering Bulletin “Optimizing LonTalk Response
Time.” Aug 1991.

Echelon Corporation. Product Specification. “Twisted Pair and Generic Control

Modules.”

EIA-709.1-A Control Network Protocol Specification. Arlington, VA: Electronic
Industries Alliance: 1999.

 45

Fault Tolerant Systems Practitioner’s Workshop. System Fault Tolerance. Carnegie
 Mellon University, 1991.

Freeman, Roger L. Practical Data Communications. New York: John Wiley & Sons,

Inc, 1995.

Hollingworth, Jarrod et. al. C++ Builder 5 Developer’s Guide. Indianapolis: Sams
Publishing, 2001.

Hsu, John Y. Computer Networks: Architecture, Protocols, and Software. Boston:

Artech House, Inc, 1996.

Lively, Kenneth et. al. Advanced Control Concepts for an Integrated Power System
(IPS) Warship. 1999.

Miano, John et. al. Borland C++ Builder How-To. Corte Madera: Waite Group Press,

1997.

Preisel, John H. “The Evolution of Machinery control Systems Aboard U.S. Navy Gas

Turbine Ships.” Naval Engineers Journal. May 1989: 102-113.

Madan, Pradip. “LonWorks Technology for Intelligent Distributed Interoperable Control
Networks.”

Madan, Pradip. “Overview of Control Networking Technology.”

Montgomery, Gloria. “In the Spotlight: Chief Engineer for the Navy RADM Kathleen

Paige.” Surface Warfare. Nov/Dec 1999: 2-5.

Raji, Reza S. “Smart Networks for Control.” IEEE Spectrum. Jun 1994. pp49-55.

Smith, Samuel, Kevin White, et. al. Final Report. “Dependable network Topologies With
Network Fragment Healing For C.O.I.D.C.S For naval Shiboard Automation.”
Department of Ocean Engineering, Florida Atlantic University: 1999.

Smith, Samuel. Survivable Shipboard CLIDCS Automation Infrastructure Development.

Feb 13, 1999.

Swick, Mark, James White, Michael Masters. “A Summary of Communication
Middleware Requirement for Advanced Shipboard Computing Systems.” NSWC,
Dahlgren Division Combat Systems Technologies Branch.

Tennefoss, Michael R. “Technology Comparison: LonWorks Systems versus

DeviceNet.” 1999.

 46

Wang, Paul S. C++ With Object Oriented Programming. Boston: PWS Publishing
Company, 1994.

Zivi, Ed and Tim McCoy. “Control of a Shipboard Integrated Power System.”

Proceedings of the 33rd Conference on Information Sciences and Control. Mar
17-19, 1999.

 47

Appendix A – MATLAB Reliability Plots

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of Nodes vs. Reliability# of Nodes vs. Reliability

For Linear Bus, Ring, and Mesh Topologies

Nodes

R
e

lia
b

ili
ty

Ring
Bus
Mesh

Figure A.1 – Ring, Bus, & Mesh Reliabilities vs. Number of Nodes

 48

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Reliability of Mesh of RingsReliability of Mesh of Rings
R = .5, N = .5

Rings

R
e

lia
b

ili
ty

Figure A.2 – Mesh of Rings Reliability

 49

Appendix B — Matlab Code

B.1 – Series Reliability Calculation

%1/c Jonathan Vanecko
%Trident
%6 December 2000

%Adapted from the work of Kevin White, Adept Systems Inc.

%Assumption: A node on the path has the same reliability
%as a node that is transmiting or receiving

%Function to calculate the reliability of a series combination of elements
function [value] = CalcRSeries(vector)
%Initialzing the value variable with the first element of the list
value = vector(1);
%Iterations for each of the elements in series
for i = 2:length(vector)
 %the value is just the previous value times the current value
 value = value * vector(i);
end

 50

B.2 – Parallel Reliability Calculation

%1/c Jonathan Vanecko
%Trident
%6 December 2000

%Function that calculates the parallel reliability of a vector

function [value] = CalcRParallel(tab)
%Initializes value to 1 minus the first list value to prepare
%for parallel calculation
reliability = 1 - tab(1);
%loop to finish calculation reliability
for i = 2: length(tab)
 %Value equals the previous value * 1-current value
 reliability = reliability * (1 - tab(i));
end
%calculating the parallel reliability value by subtracting the
%previous value from 1
%reliability = 1 - reliability;

 51
B.3 – Bus Topology Reliability Calculation

%1/c Jonathan Vanecko
%Trident
%6 December 2000

%Adapted from the work of Kevin White, Adept Systems Inc.

%Assumption: A node on the path has the same reliability
%as a node that is transmitting or receiving

%Function to calculate the availability of a path
%Path is a bus topology

%The function operates by first calculating the availability
%of all paths from the shortest path possible (between 2 nodes)
%up to the longest path possible (N nodes)

%Rn=Reliability of a node
%Rl=Reliability of the physical media
%N=Number of nodes in the network
%value=Used to store the hi, low, and average availabilities
%It will pass these values to the screen
%CalcRSeries=function to calculate a series reliability

function [value] = CalcRBus2(Rn, Rl)

%If there is 1 node present then the Ao=Rn
list=0;
nodes=20;
for i=2:nodes
 for n = 2:i
 %Forms the vector for the reliability of the nodes
 for j = 1:n
 list1(j) = Rn;
 end

 %Forms the vector for the reliability of the physical media
 for j=1:(n-1)
 list2(j)= Rl;
 end

 %Passing the merged reliability vector to the series calculation
 Ri(n-1) = CalcRSeries([list1,list2]);

 52
 end

 %Creating the output matrix of reliabilities for each number of nodes
 value(i-1) = mean(Ri);

end
%Plotting the node vs reliability
y=2:1:nodes;
plot(y,value)

 53
B.4 – Mesh Topology Reliability Calculation

%1/c Jonathan Vanecko
%Trident
%8 November 2000

%Adapted from the work of Kevin White, Adept Systems Inc.

%Assumption: A node on the path has the same reliability
%as a node that is transmitting or receiving

%Function to calculate the availability of a path
%Path is a mesh topology with a reliability for a node and link of
%R and contains N nodes

function [value] = CalcRMesh(Rn, Rl)

 Ri = [];
 for count=2:20
 N=count;
 for i = 2:N

%creates a list of reliability values R in a matrix 1x(2*current node# -1)
%this list is the reliability matrix for all of the nodes and links

 %in a given path where N nodes are traversed

 %Forms the vector for the reliability of the nodes
 for j = 1:i
 list1(j) = Rn;
 end

 %Forms the vector for the reliability of the physical media
 for j=1:(i-1)
 list2(j)= Rl;
 end

 %combine the reliabilities for nodes and links into one vector
 list=[list1 list2];

 %calculating the series reliability of the nodes and links
 r = CalcRSeries(list);

 %calculation of the number of ways to traverse i nodes in a
 %network having a total of N nodes
 P = NumOfSegPath(i, N);

 54

 if (P > 1000)
 P = 1000;
 end

 %creates a vector of the reliabilities for each of the
 %possible paths of the network. with each pass network
 %path reliabilities are added
 Ri = [Ri r*ones(1,P)];

 end

 %calculates the parallel reliability of all the
 %possible paths
 value(count-1) = CalcRParallel(Ri);

 %setting list paramaters to 0 so that old data does not get
 %added to then end of vectors that have less
 %data inserted than the previous amount
 list=0;
 list1=0;
 list2=0;
 Ri=0
 end
 t=2:1:20;
 plot(t,value);

 55

B.5 – Ring Topology Reliability Calculation

%1/c Jonathan Vanecko
%Trident
%8 November 2000

%Adapted from the work of Kevin White, Adept Systems Inc.

%Assumption: A node on the path has the same reliability
%as a node that is transmitting or receiving

%This function is used to calculate the overall availability
%of a ring of nodes

%The function will first calculate the availability of the
%smallest path possible on the top (2 nodes) and then calculate
%the longest path possible on the bottom (N nodes). The
%function will then calclate the availabilities of all possible
%combinations of path lengths from a sender node to a receiver
%node on both the top path and bottom path of the ring
%A series availability is given for both the top and bottom
%paths and then a parallel availability can be calculated
%The max, min, and average Ao is then outputted

%Rn=Reliability of a node
%Rl=Reliability of the physical media
%N=Number of nodes on the ring
%CalcRBus2=Function to calculate the reliability of a bus path
%CalcRParallel=Function to calculate parallel reliability

function [value] = CalcRRing2(Rn, Rl)

 value = [];
 nodes=20;
 N=nodes;
 for i=2:N
 N=i;
 for n = 2:N
 %n1=path length along one route to the node
 n1=n;
 %n2=path length along the other route to the node
 n2=(N+2)-n1;
 %Calculates the reliability from start node to finish node along upper path
 Rtop=CalcRbus2(Rn,Rl,n1);

 56
 Rtop=min(Rtop);
 %Calculates the reliability from start node to finish node along lower path
 Rbottom=CalcRBus2(Rn,Rl,n2);
 Rbottom=min(Rbottom);
 %Passing the reliabilities so that a parallel reliability can be found
 Ri(n-1)=CalcRParallel([Rtop,Rbottom]);
 end
 %Creating a value vector for output
 value(i-1) = mean(Ri);
 Ri=[];
 end

%Plotting the node vs reliability
y=2:1:nodes;
plot(y,value)

 57
B.6 – Ring Mesh Topology Reliability Calculation

%1/c Jonathan Vanecko
%Trident
%6 December 2000

%Assumption: A node on the path has the same reliability
%as a node that is transmitting or receiving

%Calculation of the semi-mesh of rings topology
%Reliability of router = reliability of node because it is just a node too

%N=Number of nodes on each ring
%R=number of rings but in this case the value is changed by the program in the for loop
%By deleting the for loop you can input different numbers of rings
%Rl=reliability of a link
%Rn=reliability of a node

function [value] = SemiMeshRing(N, R, Rn, Rl)

if R==1
 CalcRRing2(Rn, Rl, N)
end
noderel=[0];
for z = 2:2:14
 %Assigning the number of rings from the z value
 R=z;
 %The number of routers on a ring is equal to the number of rings-1
 routers=R-1;

%The number of nodes per ring is equal to the number of routers + number of nodes
 nodesperring=N+routers;
 %Nodes and routers have the same reliability because they are both nodes
 %Calculating the number of nodes&routers on one side of the ring
 half=floor(nodesperring/2);

%loop to go through the iterations of possible number of rings hopped out of R rings
total

 for i = 2:R
%Function call that returns the possible number of paths between 2 nodes
%that pass through i rings out of the R total rings in the mesh of rings

 numberofways=NumOfSegPath(i,R);
 %The number of rings in the current iteration
 rings=i;

%Forms a vector with the reliabilities of the nodes on 1/2 of the ring
 for j = 1:(half)
 ringvector=[ringvector Rn];

 58
 end

%Add to the ringvector the reliabilities of the links between nodes on teh ring
 %There are N-1 links between nodes
 for m = 1:(half-1)
 ringvector=[ringvector Rl];
 end
 %Calculate the series reliability of one ring
 onering=CalcRSeries(ringvector);
 %Mulitiply the reliability by the total number of rings
 partial=rings*onering;
 %Reliability calculation to take into account links between rings
 for k = 1:(rings-1)
 onepath=Rl*partial;
 end

%Form the vector of reliabilities for 2^n paths due to the ring structure
 for l = 1:(2^rings)
 parallelpass=[parallelpass onepath];
 end
 %Reliability of all ways through i nodes out of the R total nodes
 oneway(i)=CalcRParallel(parallelpass);
 %Initializing vectors to 0
 ringvector=[];
 parallelpass=[];
 end

%Calculates the parallel reliability for all of the different ways betwen 2
 %Points on a network with R rings
 systemrel=CalcRParallel(oneway);

%Matrix that stores the reliability data for each pass with R total rings
 noderel=[noderel systemrel]
end
%Plots
t=2:2:16;
plot(t,noderel)

 59
B.7 – Ring Path Calculation

%1/c Jonathan Vanecko
%Trident
%8 November 2000

%Adapted from the work of Kevin White, Adept Systems Inc.

%Assumption: A node on the path has the same reliability
%as a node that is transmitting or receiving

%this function returns the number of ways to traverse the network given
%S=the number of nodes that you are planning on traversing
%N=the number of nodes in the mesh
%This means that if you want to know the number of ways to travel from
%one node to another touching only S nodes out of the N total nodes then
%call the NumOfSegPath function.

%Each node may only be transversed once for any path between nodes

function [value] = NumOfSegPath(S, N)

 value = 1;
 for i = 2:S-1

 %i will go between 2 and the number of nodes that
 %the path will traverse. Thus, there can be no
 %greater S than the number of nodes in the network

 value = value * (N-i);
 %value = the previous value * (the number of nodes -1)

 end

return

 60

Appendix C – Protocol Data Unit Summary (PDU)

PDU Summary [3]

 61

Appendix D – Monto Carlo Analysis Plots

Number of Network Connections

0

5

10

15

20

25

30

35

40

0 5 10 15 20
Nodes

C
o

n
n

ec
ti

o
n

s Number of Semi-Mesh Connections

Number of Hypercube Connections

Figure D.1 – Plot of Physical Network Connections vs. Number of Nodes

 62

Figure D.2 – Plot of Average Hops vs. Nodes (Semi-Mesh & Hypercube)

Average Number of Hops

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 5 10 15 20

Nodes

A
ve

ra
g

e
H

o
p

s
Semi-Mesh

Hypercube

Hypercube Topolyg
Best Fit Line
(Log2)/2

Semi-Mesh
Topology Best Fit
Line

 63

Figure D.3 – Projection of Average Hops vs. Number of Nodes

Average Number of Hops

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

0 10 20 30 40 50 60 70 80 90 100

Nodes

A
ve

ra
g

e
H

o
p

s

Semi-Mesh

Hypercube

Hypercube
Topology Best
Fit (Log2)/2

Semi-Mesh
Topology Best
Fit

Average Hop
Value Over 16

Average Hop
Value Just
Under 4

 64

Appendix E—Monto Carlo Analysis Data
E.1 – Full Mesh Topology – 10 Trials with 20 Node Pairs

 Trial 1 Trial 2 Trial 3

Nodes
Start
Node

Finish
Node Hops

Start
Node

Finish
Node Hops

Start
Node

Finish
Node Hops

1 0 0 0 0 0 0 0 0 0

2 0 0 0 1 1 0 0 1 1

3 0 0 0 1 1 0 0 2 1

4 1 1 0 2 3 1 1 3 1

5 3 0 1 1 3 1 2 2 0

6 5 1 1 5 0 1 2 2 0

7 1 3 1 2 1 1 2 2 0

8 0 1 1 5 2 1 7 6 1

9 5 3 1 2 4 1 8 8 1

10 9 0 1 7 3 1 6 9 1

11 4 9 1 1 8 1 1 1 0

12 9 9 1 1 9 1 6 4 1

13 3 6 1 11 2 1 9 7 1

14 1 10 1 3 6 1 5 2 1

15 7 6 1 12 8 1 12 14 1

16 7 11 1 12 0 1 7 1 1

17 9 8 1 6 13 1 8 15 1

18 12 4 1 5 17 1 4 15 1

19 15 1 1 3 16 1 4 9 1

20 8 11 1 7 7 1 12 15 1

 65

Trial 4 Trial 5 Trial 6
Start
Node

Finish
Node Hops

Start
Node

Finish
Node Hops

Start
Node

Finish
Node Hops

0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 1 1

1 2 1 1 2 1 1 1 0

3 0 1 1 2 1 1 1 0

1 2 1 1 3 1 2 3 1

0 2 1 1 4 1 1 2 1

5 4 1 6 2 1 6 5 1

0 2 1 6 0 1 0 0 0

2 5 1 1 8 1 3 3 1

3 0 1 5 6 1 6 1 1

2 10 1 9 1 1 9 6 1

11 3 1 2 6 1 9 3 1

6 3 1 5 5 0 3 8 1

11 7 1 10 6 1 0 5 1

7 7 1 11 11 0 4 8 1

12 11 1 13 15 1 3 3 0

0 8 1 5 2 1 16 4 1

14 16 1 11 16 1 17 9 1

17 15 1 12 18 1 15 2 1

2 3 1 18 14 1 9 2 1

 66

Trial 7 Trial 8 Trial 9
Start
Node

Finish
Node Hops

Start
Node

Finish
Node Hops

Start
Node

Finish
Node Hops

0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 1 1 0

1 1 0 2 0 1 2 2 0

2 2 0 3 1 1 1 0 1

4 1 1 4 3 1 4 1 1

3 1 1 4 4 0 0 0 0

1 1 0 5 2 1 3 1 1

4 1 1 7 2 1 3 6 1

7 0 1 3 2 1 0 2 1

4 4 1 2 6 1 3 0 1

8 5 1 3 2 1 8 4 1

7 11 1 9 0 1 5 10 1

2 8 1 2 8 1 2 5 1

3 6 1 4 11 1 11 8 1

12 10 1 8 4 1 2 5 1

4 6 1 8 6 1 5 4 1

13 10 1 1 8 1 7 1 1

2 4 1 9 13 1 6 12 1

7 12 1 2 9 1 0 5 1

1 14 1 3 10 1 13 14 1

 67

Trial 10

Start Node Finish Node Hops

0 0 0
0 0 0
1 0 1
2 3 1
3 3 0
4 3 1
3 2 1
2 2 0
3 7 1
1 4 1
2 8 1
3 3 0
4 5 1
3 6 1
7 9 1
2 14 1
0 6 1
11 11 1
0 9 1
6 8 1

Figure E.1.1 – Average Hops and Number of Links

Mesh

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

0 5 10 15 20 25

Nodes

L
in

ks
 /

A
ve

ra
g

e
H

o
p

s

Average Number of Hops

Number of Links

 68
E.2 – Semi-Mesh Topology – 10 Trials with 20 Node Pairs

 Trial 1 Trial 2 Trial 3

Nodes
Start
Node

Finish
Node Hops

Start
Node

Finish
Node Hops

Start
Node

Finish
Node Hops

1 0 0 0 0 0 0 0 0 0

2 0 1 1 0 1 1 1 1 0

3 0 1 1 2 0 1 2 0 1

4 1 1 0 2 0 1 2 1 1

5 4 0 2 1 4 1 2 0 1

6 4 4 0 4 3 1 3 4 1

7 5 5 0 0 6 3 0 2 1

8 6 6 0 4 3 1 7 4 3

9 4 1 1 4 0 2 2 5 1

10 3 5 2 5 0 2 2 5 1

11 6 4 2 1 9 5 6 0 3

12 2 3 2 2 3 2 1 7 5

13 3 8 4 5 9 1 12 9 1

14 12 3 5 0 2 1 0 9 6

15 2 2 0 1 3 1 7 4 3

16 14 13 4 15 0 4 4 2 1

17 14 16 3 11 0 5 15 5 2

18 6 14 2 12 15 3 3 5 4

19 7 17 3 10 14 3 1 5 2
20 5 9 4 17 7 3 5 8 2

 69

Trial 4 Trial 5 Trial 6
Start
Node

Finish
Node Hops

Start
Node

Finish
Node Hops

Start
Node

Finish
Node Hops

0 0 0 0 0 0 0 0 0

0 1 1 0 1 1 0 0 0

1 1 0 0 0 0 1 2 1

2 3 2 2 1 1 0 0 0

1 1 0 1 1 0 3 2 2

1 4 1 3 4 1 3 2 2

4 2 1 3 3 0 4 0 2

5 2 1 1 5 2 0 3 1

1 6 3 5 3 2 6 2 2

4 7 4 7 6 2 1 9 6

7 3 5 8 7 1 10 6 2

3 7 5 3 6 3 10 1 4

9 11 1 9 7 1 7 2 3

2 11 4 2 10 3 1 1 0

3 0 1 14 4 4 2 13 4

9 6 3 11 3 5 0 2 1

13 8 3 8 3 4 11 13 4

15 16 1 6 7 2 1 0 1

15 8 3 12 4 4 6 8 1

6 9 4 7 11 2 16 7 3

 70

Trial 7 Trial 8 Trial 9
Start
Node

Finish
Node Hops

Start
Node

Finish
Node Hops

Start
Node

Finish
Node Hops

0 0 0 0 0 0 0 0 0

0 1 1 0 1 1 1 1 0

0 1 1 0 1 1 1 1 0

2 0 1 1 3 1 2 3 2

2 3 2 2 2 0 2 1 1

2 3 2 3 2 2 0 4 2

0 4 2 0 1 1 1 3 1

5 4 1 5 6 1 3 2 2

2 4 1 2 4 1 1 2 1

2 9 4 8 2 3 2 8 3

1 3 1 8 9 2 3 4 1

1 8 4 2 9 5 2 3 2

7 11 2 11 11 0 3 0 1

5 4 1 13 8 3 0 9 6

2 10 3 1 3 1 5 12 3

10 12 1 15 4 2 5 1 2

15 4 3 3 11 5 10 8 2

11 1 5 2 10 3 12 7 2

16 0 4 6 13 2 11 15 3

15 9 4 10 4 3 17 3 4

 71

Trial 10

Start Node Finish Node Hops

0 0 0
0 0 0
0 1 1
2 1 1
2 3 2
0 2 1
5 3 2
5 7 2
5 8 2
7 3 5
0 6 3
10 4 3
4 9 5
0 1 1
12 4 4
4 10 3
12 10 1
12 8 3
2 16 3
18 3 7

Figure E.2.1 – Average Hops and Number of Links

Semi-Mesh

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25

Nodes

L
in

ks
 /

A
ve

ra
g

e
H

o
p

s

Number of Links

Average Number of Hops

 72
E.3 – Hypercube Topology – 10 Trials with 20 Node Pairs

 Trial 1 Trial 2 Trial 3

Nodes
Start
Node

Finish
Node Hops

Start
Node

Finish
Node Hops

Start
Node

Finish
Node Hops

1 0 0 0 0 0 0 0 0 0

2 0 0 0 1 0 1 1 1 0

3 1 1 0 1 1 0 0 1 1

4 0 3 1 2 3 1 0 2 2

5 0 3 1 2 3 1 0 2 2

6 1 4 3 2 2 0 1 3 2

7 3 2 1 1 2 1 4 1 3

8 0 4 2 5 1 2 0 4 2

9 1 1 0 6 1 1 3 2 1

10 4 8 1 6 2 2 5 4 1

11 10 2 1 5 4 1 9 7 3

12 1 9 3 4 5 1 10 3 2

13 10 9 1 7 4 1 9 8 1

14 6 12 3 6 10 3 0 1 1

15 5 9 2 2 9 3 14 7 2

16 4 1 3 10 11 1 13 11 3

17 10 8 2 3 8 3 13 12 1

18 3 8 3 4 8 2 3 3 0

19 9 5 2 9 7 4 2 15 2

20 8 2 4 16 3 3 18 16 1

 73

Trial 4 Trial 5 Trial 6
Start
Node

Finish
Node Hops

Start
Node

Finish
Node Hops

Start
Node

Finish
Node Hops

0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 1 1

1 2 1 0 0 0 0 2 2

2 2 0 1 1 0 2 2 0

2 2 0 1 1 0 2 2 0

1 1 0 4 3 1 3 1 2

0 0 0 1 5 2 2 3 1

4 5 1 5 2 3 6 0 2

5 6 1 1 2 1 3 6 3

7 7 0 0 8 3 9 6 4

3 9 1 6 10 3 6 8 3

1 6 1 5 5 0 7 9 3

4 1 3 0 2 2 4 2 2

12 2 3 11 11 0 13 8 2

14 8 3 13 1 3 1 7 2

11 8 1 6 0 2 4 2 2

7 4 1 15 6 2 12 10 3

3 14 2 16 9 3 11 5 2

15 8 2 7 3 2 4 12 1

4 14 3 10 0 2 15 17 3

 74

Trial 7 Trial 8 Trial 9
Start
Node

Finish
Node Hops

Start
Node

Finish
Node Hops

Start
Node

Finish
Node Hops

0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 1 1 0

1 2 1 2 1 1 2 2 0

2 3 1 2 0 2 2 3 1

2 3 1 2 0 2 2 3 1

2 2 0 2 3 1 3 1 2

2 3 1 4 3 1 3 4 1

4 2 2 1 0 1 5 6 1

7 2 1 4 6 2 4 4 0

0 3 2 3 6 3 3 1 2

8 1 4 0 8 3 6 3 3

3 2 1 4 11 2 3 10 2

5 5 0 7 0 3 5 4 1

8 4 3 9 0 1 9 7 3

3 0 1 1 13 3 6 6 0

3 6 3 14 1 2 7 10 3

5 6 1 12 13 1 1 13 3

12 13 1 9 2 3 2 12 3

6 1 1 2 7 1 16 16 0

2 18 1 16 0 2 3 16 3

 75

Trial 10

Start Node Finish Node Hops

0 0 0
1 0 1
1 1 0
1 2 1
2 1 1
0 3 1
3 2 1
3 1 2
1 1 0
7 2 1
3 1 2
11 0 3
8 6 2
8 10 2
11 10 1
6 9 3
10 5 3
7 8 3
2 10 2
8 17 3

Figure E.3.1 – Average Hops and Number of Links

Hypercube

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25

Nodes

L
in

ks
 /

A
ve

ra
g

e
H

o
p

s

Number of Links

Average Number of Hops

 76

Appendix F – Network Fragment Healing Model

F.1 – Current Network Fragment Healing Model State

Currently the network fragment healing algorithm does not work properly. Because of
the many in depth design iterations the time left for study of the current model was
drastically decreased. Several sections of the model do work however, and a framework
has been created. Although the network simulation does not currently work, it is feasible
that the model may be completed in the near future. A structure has been decided upon
and now only the code to complete the design is required. Recently, several
accomplishments have been made as the C++ language has become more familiar. The
algorithm to active check for faults on the network is written and functions properly.
Also, a message queuing method has been decided upon to hold messages that desire to
be sent. Through hard work every attempt will be made to complete the network model
and generate data.

 77
F.2 – Network Simulation Source Code

//---

#include <vcl.h>
#pragma hdrstop

#include "Network2.h"

//---
#pragma package(smart_init)
#pragma resource "*.dfm"
TForm1 *Form1;

//message structure to emulate the types of parameters passed in a LONTalk message
struct MessageStructure{
 int PriorityNumber;
 int BeginningRing;
 int BeginningNode;
 int EndingRing;
 int EndingNode;
 int TheMessage;
 int DeltaBacklog;
 void *nxtmessage;
};

//message structure that contains a flag to show usage and a pointer to a message being
sent
struct MessagePool{
 int used;
 void *msg;
};

//creating a pool of message structures to be used
MessagePool Pool[MAX_MESSAGES];

//declaration of ring routing tables statically (configured initially in Lon-Works)
int TABLE_0_2[MAX_RINGS][MAX_NODES] =
{{1,1,1,1,1,1},{1,1,1,1,1,1},{0,0,0,0,0,0}};
int TABLE_0_5[MAX_RINGS][MAX_NODES] =
{{1,1,1,1,1,1},{0,0,0,0,0,0},{1,1,1,1,1,1}};
int TABLE_1_2[MAX_RINGS][MAX_NODES] =
{{1,1,1,1,1,1},{1,1,1,1,1,1},{0,0,0,0,0,0}};
int TABLE_1_5[MAX_RINGS][MAX_NODES] =
{{0,0,0,0,0,0},{1,1,1,1,1,1},{1,1,1,1,1,1}};

 78
int TABLE_2_2[MAX_RINGS][MAX_NODES] =
{{0,0,0,0,0,0},{1,1,1,1,1,1},{1,1,1,1,1,1}};
int TABLE_2_5[MAX_RINGS][MAX_NODES] =
{{1,1,1,1,1,1},{0,0,0,0,0,0},{1,1,1,1,1,1}};

//---
class Ring
{
public:
 Ring(int NumberOfNodes, int RingNumber);
 void PassMessageToNode(void);
 void InsertMessageInQueue(void);
 void CheckForFragments(void);
 void SendMessage(void);
 void ReceiveMessage(void);
 int nodes;
 int RingNumber;
private:

};
//---
class Node
{
public:
 Node(int NoNum, int RiNum);
 void OutgoingMessage(void);
 int NodeNumber;
 int RingNumber;
 int RouterOrTerminal;
 int MyRouterTable[3][6];
 void BuildRouterTable(int RouterOrTerminal, int
Table[MAX_RINGS][MAX_NODES]);
 void BuildMessage(void);
 //put router table in if necessary
private:
 void PleaseQueueThis(void);
 void WriteToFile(void);
};
//---
Node* RingPointer0[6];
Node* RingPointer1[6];
Node* RingPointer2[6];
//---
//Initialization of the form

 79
__fastcall TForm1::TForm1(TComponent* Owner)
 : TForm(Owner)
{
 //user defined
}
//---
//section to determine what happens when start network button is clicked
void __fastcall TForm1::StartNetworkClick(TObject *Sender)
{
 //clear the message boxes upon start up
 mRing1->Lines->Clear();
 mRing2->Lines->Clear();
 mRing3->Lines->Clear();

 //turn off the start button
 StartNetwork->Enabled = FALSE;
 //turn on the stop button
 StopNetwork->Enabled = TRUE;
}
//---

//section to determine what happens when the stop network button is clicked
void __fastcall TForm1::StopNetworkClick(TObject *Sender)
{
 //terminate the threads for each ring

 //turn on the start network button
 StartNetwork->Enabled = TRUE;
 //turn off the stop network button
 StopNetwork->Enabled = FALSE;
}
//---
//ring constructor
Ring::Ring(int NumberOfNodes, int RingNumber)

{
 switch(RingNumber){

 case 0 : {

 //crete an array of nodes for the ring invoking the constructor method
 for (int i = 0; i<=5; i++){
 RingPointer0[i] = new Node(i, 0);
 }

 80
 break;
 }
 case 1 : {
 for (int i = 0; i<=5; i++){
 RingPointer1[i] = new Node(i, 1);
 }
 break;
 }
 case 2 : {
 for (int i = 0; i<=5; i++){
 RingPointer2[i] = new Node(i, 2);
 }
 break;
 }
 }
}
//---
//node constructor
Node::Node(int NoNum, int RiNum)
{
 //declaring initial values in the node
 NodeNumber = NoNum;
 RingNumber = RiNum;
 RouterOrTerminal = 0;
}
//---
//method that will build a router table for each router on a ring
void Node::BuildRouterTable(int, int Table[MAX_RINGS][MAX_NODES])
{

}

//---
//function called on start up to begin the creation of rings and nodes
void InitializeNetwork(int MessageNumber[MAX_RINGS][MAX_NODES])
{
 //initializing three rings
 //first paramater is the number of rings
 //second is the ring number

 81
 Ring *One = new Ring(MAX_NODES, 0);
 Ring *Two = new Ring(MAX_NODES, 1);
 Ring *Three = new Ring(MAX_NODES, 2);

 int a = 0;
 int b = 0;
 while (a < MAX_RINGS)
 {
 MessageNumber[a][b] = 0;

 while (b < MAX_NODES)
 {
 MessageNumber[a][b] = 0;
 b++;
 }
 a++;
 }

}
//---
//method called to inform a node to build and send a message
void MakeMessageNotification(int CurrentRing, int CurrentNode)
{
 switch(CurrentRing){

 case 0 : {
 RingPointer0[CurrentNode]->BuildMessage();
 }

 case 1 : {
 RingPointer1[CurrentNode]->BuildMessage();
 }

 case 2 : {
 RingPointer2[CurrentNode]->BuildMessage();
 }
 }
}
//---
//main program loop routine
//after initialization program will loop until simulation time ends
int main(void)
{
 int MessageNumber[MAX_RINGS][MAX_NODES];

 82

 //function to initialize the network with the number of rings
 //and the number of nodes associated with each ring
 InitializeNetwork(MessageNumber);

 for (int i = 0; i < MAX_MESSAGES; i++)
 {
 Pool[i].used = 0;
 }

 //Filling the Routing table of specific nodes on each ring
 //by calling the BuildRouterTable method
 RingPointer0[2]->BuildRouterTable(1, TABLE_0_2);
 RingPointer0[5]->BuildRouterTable(1, TABLE_0_5);
 RingPointer1[2]->BuildRouterTable(1, TABLE_1_2);
 RingPointer1[5]->BuildRouterTable(1, TABLE_1_5);
 RingPointer2[2]->BuildRouterTable(1, TABLE_2_2);
 RingPointer2[5]->BuildRouterTable(1, TABLE_2_5);

 //Initialize the counter variables
 int CurrentRing = 0;
 int CurrentNode = 0;

 //Main program while loop to control simulation time
 while (NETWORK_TIME < NETWORK_STOP_TIME)
 {

 //Function to notify each ring when it should generate
 //a message to send
 MakeMessageNotification(CurrentRing, CurrentNode);

 CurrentNode++;

 //If you are on a node that is greater than the
 //number of nodes on the ring go to the next ring
 if(CurrentNode > MaxNodes[CurrentRing])
 {
 CurrentRing++;

 //If the current ring is larger than the number of
 //rings then go back to ring 0 node 0
 if(CurrentRing > (MAX_RINGS - 1))
 {
 CurrentRing = 0;

 83
 }
 CurrentNode = 0;
 }
 }
return 0;

 84
F.3 – Network Simulation Header File

//---

#ifndef Network2H
#define Network2H
//---
#include <Classes.hpp>
#include <Controls.hpp>
#include <StdCtrls.hpp>
#include <Forms.hpp>

//---
//global constants—allow for easy manipulation of the network
//only need to change these values
#define MAX_NODES 6
#define MAX_RINGS 3
#define NODE_COUNT 0
#define NETWORK_TIME 0
#define NETWORK_STOP_TIME 10
#define MAX_MESSAGES 100

int MaxNodes[3] = {5,5,5};
//---
//class information for the form
class TForm1 : public TForm
{
__published: // IDE-managed Components
 TButton *StartNetwork;
 TButton *StopNetwork;
 TMemo *mRing1;
 TMemo *mRing2;
 TMemo *mRing3;
 void __fastcall StartNetworkClick(TObject *Sender);
 void __fastcall StopNetworkClick(TObject *Sender);
private: // User declarations

public: // User declarations
 __fastcall TForm1(TComponent* Owner);
};
//---
extern PACKAGE TForm1 *Form1;
//---
#endif

 85

F.4 – Active Network Fault Detection
/*
1/c Jonathan Vanecko
17 April 2001
This source code could be added to the network simulation as a function or
method that is used to check the physical state of the network on a ring. It
could be called by the sentinels when they actively break the network and
attempt to find faults. Because all the nodes are ordered sequentially
any fault found can be isolated and the exact location determined.

The fault check works by starting at a given node (could be passed to the
function) and checking each path. This path information is contained in
the NetworkStateArray which represents a routing table in the
simulation. If a node reaches the highest (or lowest) value in the array
then it must loop back to the lowest (or highest) node to accurately model
the ring topology.
*/

//---
#include <iostream.h>
#include <conio.h>
#include <vcl.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 //there is 1 ring
 //there are 6 nodes
 //there are 6 links
 //0-1,1-2,2-3,3-4,4-5,5-0

 //default state of links is 1 == continuity
 //array of network states starting at 0-1
 //and finishing with 5-0
 int NetworkStateArray[6] = {1, 0, 1, 1, 0, 1};
 // 01 12 23 34 45 50

 //declaring the start and stop node for the physical
 //continuity test
 int nodestart = 5;
 int nodestop = 2;

 86

 //initializing both the clockwise and counter clockwise directions
 //to a value of 1
 int transverse1 = 1;
 int transverse2 = 1;
 //initialize loop counter variables
 int i,j;

 //flag for when the path check crosses 0
 bool Rollover = FALSE;

 //numbers used to determine if a rollover has occured
 int max = 6;
 int min = -1;

 //the counterclockwise direction continuity check
 i = (nodestart -1);
 while (i !=(nodestop -1))
 {
 //if the current node is equal to the min value
 //they you need to go to the highest node on the ring
 if (i == min)
 {
 Rollover = TRUE;
 }

 //case 1 when the destination node is the sender node
 else if ((nodestart-1)==(nodestop-1))
 {
 transverse1 = 1;
 break;
 }
 //case 2 when the stop node is lower than the start node
 else if ((nodestop-1)<(nodestart-1))
 {
 transverse1 *=NetworkStateArray[i];
 }
 //case 3 where the start node is lower than the stop node
 //and thus the check must go across the 0-5 boundry
 else
 {
 //while the connection is to the right of zero
 if (Rollover == FALSE)
 {
 transverse1 *=NetworkStateArray[i];

 87
 }
 //but if the connection crosses zero
 else
 {
 i = i + 8;
 Rollover = FALSE;
 }
 }
 i--;
 }
 //if communication can be established counterclockwise
 //then there is no reason to check the other direction
 if (transverse1 == 1)
 {
 //let the user know that the path works
 cout<<"The first path works just fine"<<endl;
 getch();
 }
 //if communication can not be established we must try the
 //clockwise direction
 else
 {

 j = (nodestart);
 while (j !=(nodestop))
 {
 if (j == max)
 {
 Rollover = TRUE;
 }

 //case 1 when the stop node is greater
 //than the start node
 else if ((nodestop)>(nodestart))
 {
 transverse2 *=NetworkStateArray[j];
 }
 //case 2 where the stop node is lower than that
 //start node and the check must cross the zero
 //boundry
 else
 {
 //while the connection is to the right of zero
 if (j<=5)
 {

 88
 transverse2 *=NetworkStateArray[j];
 }
 //but if the connection crosses zero
 else
 {
 Rollover = TRUE;
 j = j - 7;
 }
 }
 j++;
 }
 }
 if (transverse2 == 1)
 {
 //let the user know that the first path was faulted
 //but data can be sent to the node in the other direction
 cout<<"The first path didn't work so we went the other way"<<endl;
 getch();
 }
 else
 {
 //both directions contain faults
 //the only way to access the destination node is by using
 //routers connected to other rings
 cout<<"Neither direction works. Try using a router"<<endl;
 getch();
 }

 return 0;
}

	edoc_995468238.sf298.pdf
	Form SF298 Citation Data

